

Looking after all our water needs

Lower De Grey River: ecological values and issues

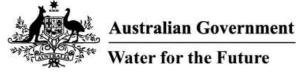
Looking after all our water needs

Department of Water Environmental water report series Report no. 12 January 2010

Department of Water

168 St Georges Terrace Perth Western Australia 6000 Telephone +61 8 6364 7600 Facsimile +61 8 6364 7601 www.water.wa.gov.au

© Government of Western Australia 2010


January 2010

This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the *Copyright Act 1968*, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to the Department of Water.

```
ISSN 1833-6582 (print)
ISSN 1833-6590 (online)
ISBN 978-1-921675-90-4 (print)
ISBN 978-1-921675-91-1(online)
```

Acknowledgements

This report was prepared by Robyn Loomes and Mike Braimbridge from the Department of Water's Environmental Water Planning section. The authors acknowledge the input and comments provided by Fiona Lynn, Darryl Abbott and Hazli Koomberi.

This project is part funded by the Australian Government's \$12.9 billion *Water for the Future* initiative.

For more information about this report contact:

Robyn Loomes, Water Resource Use Telephone 08 6364 7600 Facsimile 08 6364 7601

The recommended reference for this publication is:

Loomes, R & Braimbridge, M 2010, *Lower De Grey River: ecological values and issues*, Environmental water report series, Report no. 12, Department of Water, Government of Western Australia.

Disclaimer

This document has been published by the Department of Water. Any representation, statement, opinion or advice expressed or implied in this publication is made in good faith and on the basis that the Department of Water and its employees are not liable for any damage or loss whatsoever which may occur as a result of action taken or not taken, as the case may be in respect of any representation, statement, opinion or advice referred to herein. Professional advice should be obtained before applying the information contained in this document to particular circumstances.

Contents

1	Intro	duction	1
2	Biop	hysical setting	2
	2.1	Climate	2
	2.2	Physiography and geomorphology	5
	2.3	Hydrogeology	
		Aquifers 6	
		Current use	7
		Groundwater	
		River flow and aquifer recharge and storage	
	. .	Water balance	
	2.4	Vegetation and flora	
	2.5	Fauna	
	2.6	Land use and cultural values	14
3	Ident	tification and description of groundwater-dependent ecosystems	16
	3.1	Wetland ecosystems	16
		Hydrology 16	
		Ecology 18	
		Sensitivity and conservation significance	
	3.2	Riparian ecosystems	27
		Ecology 27	
		Conservation significance	
	3.3	Aquifer ecosystems	
	3.4	Conceptual models of groundwater dependence	
		Coolenar Pool	
		Marloo Pool J96 Pool 35	34
		Bulgarene Pool	38
		Homestead Pool	
		Muccangarra Pool	
	3.5	Summary of ecological values	
		Wetlands 44	
		Riparian vegetation	45
		Aquifers 46	
4	Ecol	ogical management objectives	47
Ar	ppend	lices	49
•	•		
R	elerer	nces	03

Appendices

Appendix A	Photos	49
Appendix B	Vegetation transect species lists and abundances 2009	52
Appendix C	Vegetation transect overstorey species health and diameter 2009	55

Figures

Figure 1	De Grey River borefield (from Haig 2009)	3
Figure 2	Mean monthly temperatures from Port Hedland Airport (1948–2009)	4
Figure 3	Long-term annual rainfall (1900–2008) for selected meteorological stations	
-	near the De Grey study area	4
Figure 4	Monthly average rainfall (mm) and evaporation (mm) (1900–2008) for	
	selected meteorological stations near the De Grey study area)	5
Figure 5	Geological cross-section (adapted from Dames & Moore 1978)	6
Figure 6	Namagoorie borefield total annual abstraction 1981–2009 (July)	7
Figure 7	Selected Namagoorie monitoring bore hydrographs (1974–2009)	8
Figure 8	Annual streamflow and groundwater levels (bore E3) 1975–2008	9
Figure 9	Coolenar Pool daily stage height and Port Hedland rainfall (1974-2008)	. 11
Figure 10	Vegetation mapping (adapted from Strategen 2006)	13
Figure 11	Location and permanence of De Grey River pools.	17
Figure 12	Relationship between groundwater at bore U1 and surface water levels at	
	J96 Pool	18
Figure 13	Comparison of mean tree health between June 2004 and June 2009	. 30
Figure 14		
-	transect.	32
Figure 15	Conceptual groundwater dependence of Coolenar Pool	33
Figure 16	Conceptual groundwater dependence of Marloo Pool.	35
Figure 17	Conceptual groundwater dependence of J96 Pool and surrounds	. 37
Figure 18	Conceptual groundwater dependence of Bulgarene Pool and surrounds	. 39
Figure 19	Conceptual groundwater dependence of Homestead Pool and surrounds	41
Figure 20	Conceptual groundwater dependence of Muccangarra Pool and	
	surrounds.	43

Tables

Table 1	Stratigraphic units of the lower De Grey River (from Haig 2009)	5
Table 2	Major river flows in the Pilbara (from Ruprecht & Ivanescu 2000)	10
Table 3	De Grey annual water balance before abstraction (from Davidson 1974)	11
Table 4	Freshwater fish species recorded from the De Grey River	20
Table 5	Physico-chemical parameters measured in 2004, 2008 and 2009	24
Table 6	Fauna of conservation significance sensitive to groundwater decline	
	(Outback Ecology Services 2004)	26

1 Introduction

Water is a defining feature of the semi-arid Pilbara region. Water management is vital to the beliefs and way of life of the region's Aboriginal people, to its towns and ports, and to the pastoral, mining and tourism industries.

The Pilbara mining industry's expansion has seen increased water demand from inland mining operations and coastal town and port supplies. Coastal demand is placing pressure on current water sources.

The Geological Survey of Western Australia investigated alluvial sediments across the Pilbara in the 1960s and 1970s, identifying the Lower De Grey River as a potential groundwater supply for Port Hedland.

The Namagoorie borefield, commissioned in 1979, is situated on the De Grey. The Water Corporation operates the borefield as part of the Port Hedland water supply scheme and is currently licensed to abstract 7.0 GL/yr. Although a second borefield (Bulgarene) has been proposed downstream of the Namagoorie, at the time of writing it remains reserved for future public use but there is no current intention to develop it. This coupled with existing usage (scheme supply and mining) places the resource under significant demand pressure.

The Water Corporation undertook a series of ecological studies as part of the environmental impact assessment process for the proposed Bulgarene borefield. These studies confirmed the occurrence of the following groundwater-dependent ecosystems associated with the De Grey River aquifer:

- riverine pools
- riparian vegetation
- aquifer ecosystems.

In this ecological values and issues report we identify and describe groundwaterdependent ecosystems in the lower De Grey River area using available information and additional (limited) field studies. We then use existing hydrological and biological data and updated vegetation mapping and transect data to conceptualise the groundwater dependence of key ecosystems, enabling us to formulate management objectives.

The outcomes of this work will be considered in the development of ecological water requirements (EWRs) and ultimately a water allocation plan.

2 Biophysical setting

The De Grey River basin is located north-east of Port Hedland in the Pilbara region. Covering an area of approximately 50 000 km², it is the largest river by volume in the region (based on mean annual flow). The EWR study area is near the existing Namagoorie borefield, downstream of the confluence with the Shaw River (Figure 1).

The biophysical environment of the De Grey River has been described previously in van Dam et al. (2005), Strategen (2006), Goater and Horgan (2006), Water Corporation (1998) and Haig (2009). The following information summarises these reports and includes updated climatic and hydrological data.

2.1 Climate

The Pilbara region's climate is classified as semi-arid to arid with hot dry conditions most of the year. Average maximum monthly temperatures recorded at the Port Hedland Airport meteorological station exceed 35°C from October to March and fall to 27°C in July (Figure 2). Monthly minimums range from 12°C in July to 25.5°C in January and February.

Average annual rainfall (1900–2008) in the region is generally low (Strelley: 325 mm; Pardoo: 298 mm). It is also highly variable because it depends on summer cyclones and autumn thunderstorms, with most rainfall occurring between November and March. In addition, the heat and clear skies result in average evaporation greatly exceeding rainfall. High evaporation and low rainfall cause an extreme moisture deficit across the region.

A number of meteorological stations are positioned near the De Grey River. Figures 3 and 4 show the long-term annual rainfall (1900–2008) and average monthly rainfall and evaporation recorded at the Strelley and Pardoo stations. Although data were also available for stations closer to the study area (De Grey Station, Strelley pumping station), the datasets used here were the most complete.

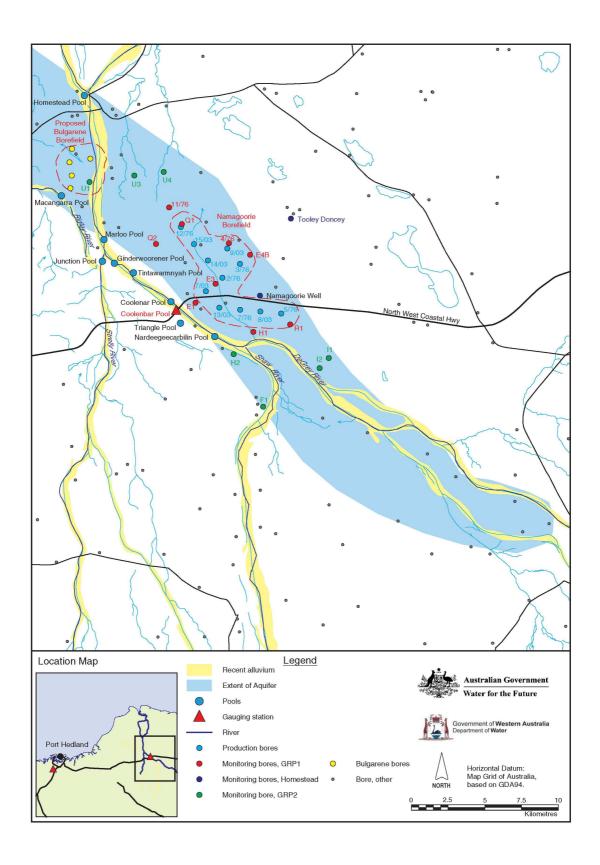


Figure 1 De Grey River borefield (from Haig 2009)

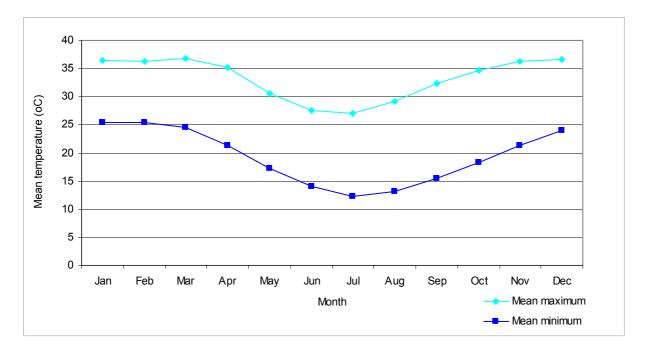


Figure 2 Mean monthly temperatures from Port Hedland Airport (1948–2009)

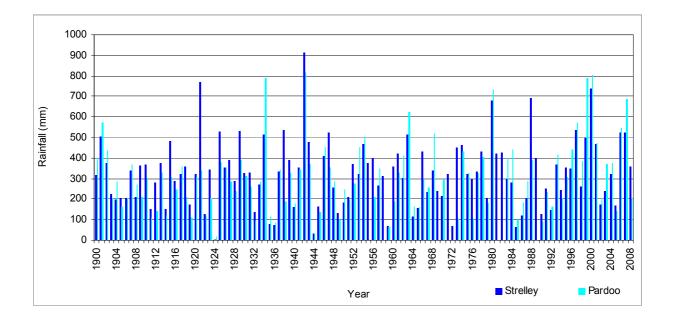


Figure 3 Long-term annual rainfall (1900–2008) for selected meteorological stations near the De Grey study area

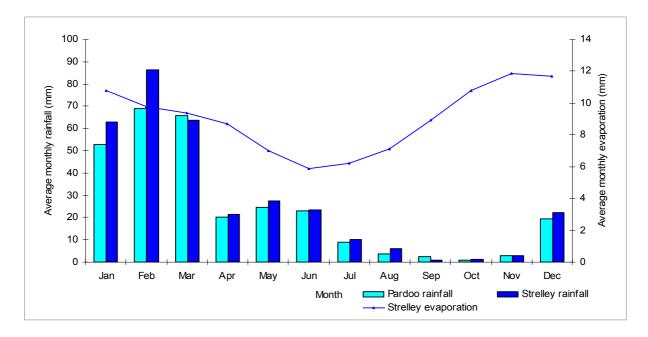


Figure 4 Monthly average rainfall (mm) and evaporation (mm) (1900–2008) for selected meteorological stations near the De Grey study area)

2.2 Physiography and geomorphology

The area surrounding the lower De Grey River consists of dissected highlands, extensive gravel plains and a wide alluvial plain leading westward onto a narrow coastal plain, with a small desert area that extends onto the south-western edge of the Canning Basin. The bedrock consists of Archaean metasediments, granites and volcanics: it outcrops extensively in the Ord Ranges and Ellarine Hills and also underlies the alluvial plain at depth (Table 1; Figure 5) (Dames & Moore 1978). Although the Mesozoic sediments do not outcrop in the area, they are present beneath the northern part of the Namagoorie borefield. Cainozic sediments exist as discontinuous patches of pisolite and calcrete of Tertiary age, with alluvium of Quaternary age to a depth of about 40 m on the De Grey River plain.

Era	Period	Rock unit	Lithology
Cainozoic	Cainozoic Quaternary		Alluvial clay, silt, sand, gravel conglomerate
	Tertiary	Paleochannel	Alluvium, pisolite and calcrete
Mesozoic	Early Cretaceous	Broome	Sandstone, shale and sandstone
Unconformity			
Archaean		Greenstone	Metasediments and volcanic rocks
		Granite	Granite and intrusive rocks

Table 1	Stratigraphic units	of the lower De G	rev River (from	n Haia 2009)
TUDIO I	ou augraphio anno			r rung 2000/

The De Grey River has a north-west-flowing drainage pattern, with major tributaries being the Shaw, Strelley, Coongan, Oakover and Nullagine rivers. Small creeks and erosion channels run from the ranges and plains of the Chichester, Goldsworthy, Isabella and Gregory ranges, forming the river's headwaters. Closer to the study area, the Strelley East and West branches feed the Ridley River, which wraps around the Ord Ranges before draining north-west (Worley Parsons 2005). From here the De Grey widens (1 km) and becomes a well-developed coastal drainage system.

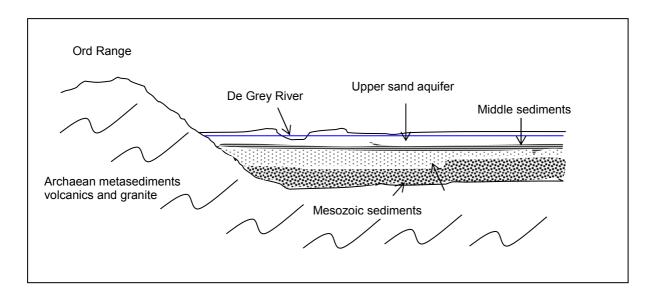


Figure 5 Geological cross-section (adapted from Dames & Moore 1978)

2.3 Hydrogeology

The Geological Survey of Western Australia investigated alluvial sediments in the area between 1969 and 1972 as a potential water supply for Port Hedland (Davidson 1974). Forty-nine exploration drill holes into the alluvium and underlying bedrock formed the basis of the investigations. This and subsequent studies have led to a relatively comprehensive understanding of the De Grey's hydrogeology, although further work is being undertaken in conjunction with the current study.

The alluvial De Grey aquifers may be connected with underlying aquifers in the Mesozoic sediments, which may form part of the West Canning Basin. However, the Mesozoic sediments of the De Grey area are rich in clay and silt and therefore low yielding (Haig 2009).

Aquifers

The current river channel overlies a paleochannel, although paths deviate in some areas (Figure 1). The existing Namagoorie borefield is on the northern edge of the paleochannel.

Worley Parsons (2005) identified three distinct units, described as the 'upper sand aquifer', 'middle sediments' and 'basal gravel/sand aquifer' (Figure 5). The upper sand aquifer generally occurs within the current channel. It is less defined than the deeper aquifer and is usually only suitable for stock and domestic use. The middle sediments, separating the upper and lower aquifers, comprise 5 to 20 m of sandy clay or clayey sand. The basal gravel/sand aquifer, within the palaeochannel, is the most productive of the two aquifers. It generally occurs at depths below 30 m, ranging in thickness from about 20 to 40 m (Worley Parsons 2005). The unit varies from sand to gravel and clayey gravel towards the basement and is likely to be connected to the upper aquifer. Both aquifers are thought to be largely unconfined (Davidson 1974).

Current use

The Namagoorie borefield, located 75 km east of Port Hedland on the east side of the De Grey River, was commissioned in 1979 to supplement supply to the Port Hedland water supply scheme. The borefield comprises 11 production bores and 18 monitoring bores and is licensed to abstract 7 GL/yr.

Comparison of total annual abstraction and water levels from bore E1, which is close to the production bores, shows no clear relationship between abstraction and groundwater levels (Figure 6).

Abstraction increased significantly after 1995. Since that time (excluding 2009 due to incomplete data) use has averaged 6 GL/yr, but went as high as 7.2 GL/yr in 2003. Although production has been stepped down since 2004–05 (after the Port Hedland hot-briquetted iron facility closed), this is only expected to be temporary as the demand for water resources from the mining industry and associated infrastructure increases.

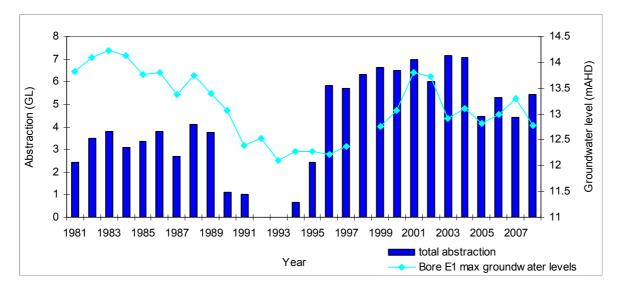


Figure 6 Namagoorie borefield total annual abstraction 1981–2009 (July)

Groundwater

Since 1974 groundwater levels have been monitored at numerous bores screened within the basal gravel/sand aquifer across the study area (25 at Bulgarene; 12 at Namagoorie). Data indicate the watertable typically occurs 5 to 11 m below the ground surface (Figure 7). Selected bores show a decline in the watertable between 1974 and 1980, followed by a general increase to 1996 when levels then dropped to near-historic lows before rising again. This trend closely mirrors surface water flows and hence rainfall (Figure 8).

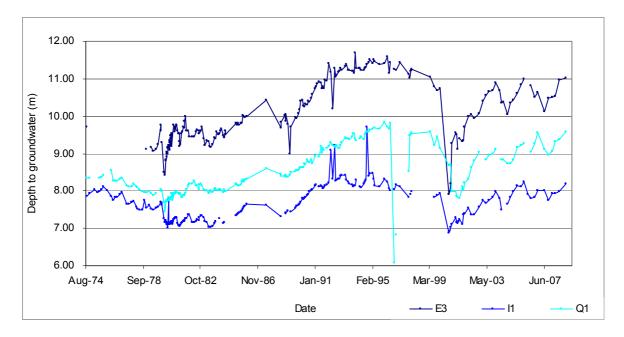


Figure 7 Selected Namagoorie monitoring bore hydrographs (1974–2009)

Groundwater outflow occurs at the northern end of the study area (Martin 1996; Worley Parsons 2005). Before the borefield was developed, throughflow was estimated as 5900 m³/day or 2.2 GL/yr, which translated to 560 m³/day/km for a 10.5 km section of the palaeochannel north of the De Grey channel and downstream of the Shaw River confluence (Davidson 1974). By December 1995, abstraction had flattened the hydraulic gradient north of the borefield, reducing outflow to 230 m³/day/km (Martin 1996).

Abstraction also altered water level contours, resulting in additional inflow to the borefield, particularly between the borefield and the De Grey. Martin (1996) thought it likely that the borefield was inducing additional groundwater flow for about 3 km downstream of the Great Northern Highway, although this was based on limited data.

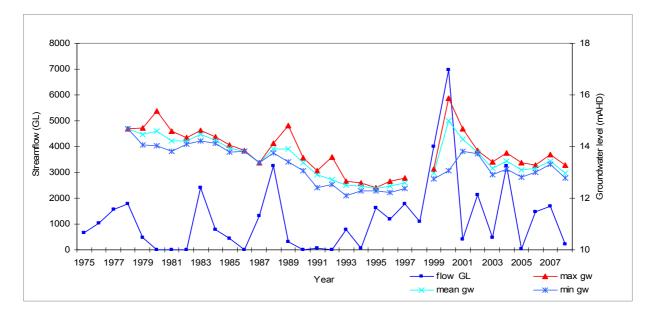
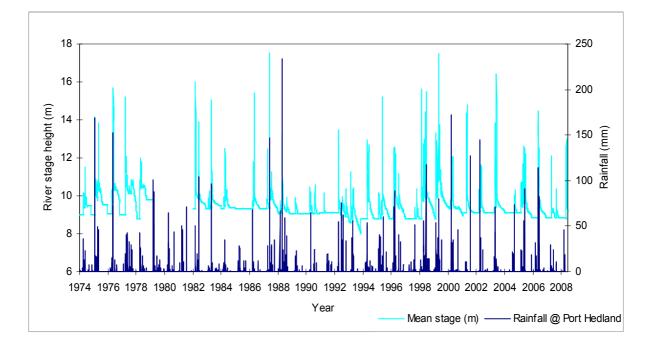


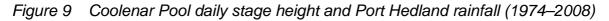
Figure 8 Annual streamflow and groundwater levels (bore E3) 1975–2008

River flow and aquifer recharge and storage

Based on mean and median annual flows and coefficients of variation, the De Grey is the largest and most reliable of the gauged Pilbara rivers (Table 2) (Ruprecht & Ivanescu 2000). Median annual flows of the De Grey (1062 GL) are an order of magnitude higher than the next largest rivers in the region, the Ashburton (534 GL) and the Yule (136 GL), despite similar rainfall. This is most likely a function of the De Grey's large drainage basin (56 890 km²) and inflows from tributaries, including the Strelley, Shaw, Coongan, Oakover and Nullagine rivers. Although the longest number of consecutive months during which no flow was recorded is 19 months, this occurred in the only year of no measured flow during the 30-year flow record (Haig 2009).

Flooding of the De Grey and other main ephemeral tributaries in the region, specifically the Shaw, Ridley and Strelley rivers, is the greatest source of De Grey aquifer recharge (Worley Parsons 2005). Direct rainfall recharge is thought to be relatively insignificant due to low annual rainfall, high evaporation and the low infiltration capacity of the clayey floodplain soils away from the riverbeds.


Since 1974 flows and stage heights have been recorded at Coolenar Pool gauging station (701003) near the Great Northern Highway (Figure 9). Pool levels have also been measured at several sites (Bulgarene, Homestead, J96, Marloo and Muccangarra pools).


Flow primarily occurs in late summer and extends into late winter, although in exceptional years flow has been perennial (Pinder & Leung 2009). The long-term mean annual flow at Coolenar Pool (1975–2007) is 1396 GL. Although the alluvium receives river flow-events above the mean average one in every three years, one in six years the total annual flow is very low (<10 GL).

Gauging station number	Catchment area (km ²)	Mean rainfall (mm) ⁴	Mean annual flow (GL)	Median annual flow (GL)	CV ¹
706003	71 387	300	922	534	1.32
707005	2326	400	88	65	0.80
707002	7104	500	87	18	1.70
708002	14 629	450	215	51	1.40
708003	18 371	400	255	97	1.31
709004	1948	375	40	14	2.08
709001	1058	400	39	23	1.30
709003	4581	400	164	40	1.60
709005	8427	400	350	136	1.40
709010	885	400	29	5	1.20
710003	56 890	400	1430	1062	1.10
710229	6501	400	328	151	1.60
710204	3736	400	112	68	1.30
	station number 706003 707005 707002 708002 708003 709004 709003 709005 709005 709005 709005 709005 709005 709005 709010 710003 710229	station number area (km²) 706003 71 387 707005 2326 707002 7104 708002 14 629 708003 18 371 709004 1948 709003 4581 709005 8427 709010 885 710003 56 890 710229 6501	station number area (km²) rainfall (mm) ⁴ 706003 71 387 300 707005 2326 400 707002 7104 500 708002 14 629 450 708003 18 371 400 709004 1948 375 709001 1058 400 709003 4581 400 709005 8427 400 709010 885 400 709010 6501 400	station number area (km ²) rainfall (mm) ⁴ annual flow (GL) 706003 71 387 300 922 707005 2326 400 88 707002 7104 500 87 708002 14 629 450 215 708003 18 371 400 255 709004 1948 375 40 709003 4581 400 39 709005 8427 400 350 709010 885 400 29 710003 56 890 400 328	station number area (km²) rainfall (mm) ⁴ annual flow (GL) annual flow (GL) 706003 71 387 300 922 534 707005 2326 400 88 65 707002 7104 500 87 18 708002 14 629 450 215 51 708003 18 371 400 255 97 709004 1948 375 40 14 709003 4581 400 39 23 709003 8427 400 350 136 709010 885 400 29 5 710003 56 890 400 1430 1062 710229 6501 400 328 151

Table 2	Major river flows in the Pilbara	(from Ruprecht & Ivanescu 2000)

¹ CV: coefficient of variation ² station 708002 at Gregory Gorge ³ station 708003 at Jimbegnyinoo ⁴ based on mean annual isohyets

Water balance

Davidson (1974) estimated a groundwater balance along a 25 km stretch of the river, running from the north end of the existing borefield to 10 km upstream of the Shaw River confluence (170 km²) (Table 3).

Total recharge from the De Grey and Strelley rivers was estimated as 15.6 GL/yr and rainfall inputs as 1.4 GL/yr. Transpiration along the river is the highest contributor to discharge, estimated as 50 per cent of pan evaporation (Davidson 1974). Applying a transpiration of 1.25 m over 11 km² (estimated vegetated area) resulted in an estimated volume of 13.75 GL/yr. Pool evaporation estimated from a pan evaporation rate of 2.5 m/yr, over a pool area of 0.25 km², resulted in a loss of 0.63 GL/yr.

Inputs (GL)		Outputs (GL)		
Recharge – De Grey and Strelley	15.60	Transpiration	13.75	
Rainfall	1.40	Pool evaporation	0.63	
		Groundwater outflow	2.20	
Total	17.00		16.58	

Table 2	Do Cro	y annual water balan	an hafara aha	straction (from	Davidoon 1071)
i able S	DeGre	v annuai walei Dalan	ce belole abs	รและแบท แทบเท	Daviusuii 1974)

2.4 Vegetation and flora

The De Grey study area lies within the Abydos Plain physiographic unit in the Pilbara region's Fortescue Botanical District. Beard (1975) conducted broadscale vegetation mapping. He identified the dominant vegetation types as sclerophyll riverine woodland along creeks, bordered by plains of mixed grass and spinifex with scattered trees, and spinifex steppe in the west of the study area.

Although riparian and grassland vegetation of the De Grey area was mapped by Halpern Glick Maunsell (HGM) (1998) and Strategen (2006), in 2009 staff from the Department of Water extended the mapping to cover the current study area (Figure 10). No 'declared rare' or 'priority' flora species were recorded in these surveys.

The De Grey and major tributaries are fringed by *Eucalyptus camaldulensis* and *Melaleuca argentea* woodland over a sparse understorey of smaller trees and shrubs (HGM 1998). Where the woodland spreads out onto floodplains, *E. victrix* and occasional *Corymbia flavescens* replace *E. camaldulensis* and *M. argentea*, forming a tree-savanna over a ground layer of grasses that are dense and predominantly exotic (Beard 1975) (see Appendix A for photos of community types).

The grass and spinifex layers of the plains are dominated by the exotic grass *Cenchrus ciliaris* (buffel grass) and *Triodia pungens* (soft spinifex), with tree species including *Atalaya hemiglauca, E. victrix, C. flavescens* and *Lysiphyllum cunninghamii* (Strategen 2006). Poaceae, Mimosaceae, Fabaceae and Myrtaceae are the dominant vascular plant families, with the most common species in the study area including *C. ciliaris, A. hemiglauca, E. camaldulensis* and *Carissa lanceolata*.

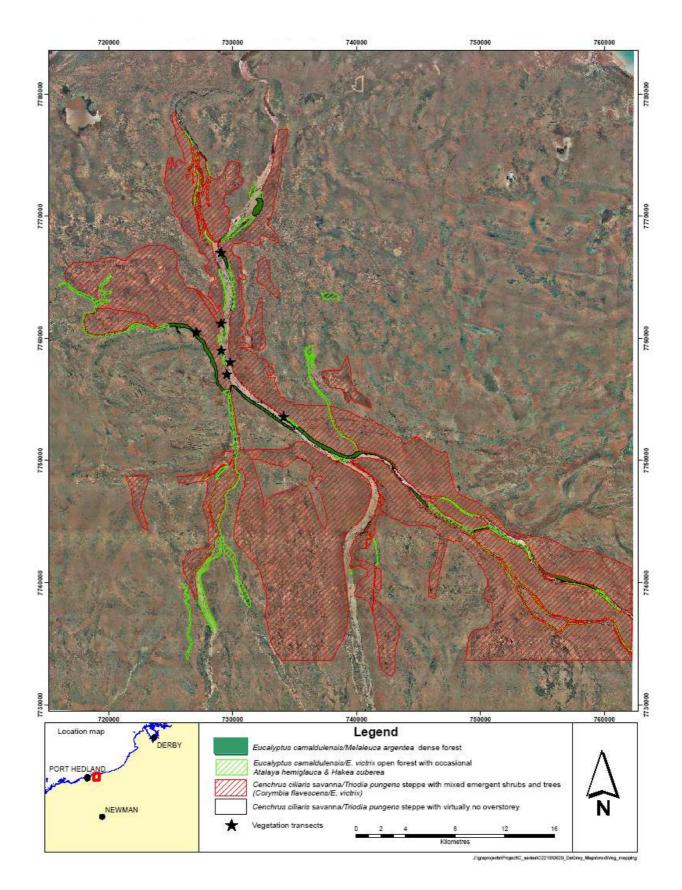


Figure 10 Vegetation mapping (adapted from Strategen 2006)

2.5 Fauna

Numerous fauna surveys have been undertaken in the De Grey study area. Fish and/ or macroinvertebrates were sampled on the De Grey and its tributaries as part of previous borefield development and regional characterisation studies (van Dam et al. 2005; Massini & Walker 1989; AUSRIVAS 2004; Dames & Moore 1978; HGM 1998; Kay et al. 1999; Massini 1988; Morgan et al. 2003; Pinder & Leung 2009). Van Dam et al. (2005) assessed hydrological processes that maintained the ecological values of river pools and the sensitivity of fish and macroinvertebrates to water regime change (see Section 3.1). Most recently Pinder and Leung (2009) investigated the relationship between aquatic invertebrates and habitat variables that may be affected by groundwater drawdown.

HGM (1998) undertook fauna trapping and non-systematic fauna surveys at 14 sites within the borefield area. Outback Ecology Services (2004) reviewed those survey results and other published material and searched relevant databases and archives. On the basis of known species distributions and the habitats available (pools, riverine forest and savanna/steppe), species of up to 145 birds, 97 reptiles, nine frogs, one turtle and 26 native and 12 introduced mammals may occur within the survey area. After this review Outback Ecology Services (2004) assessed fauna sensitivity to changes in pool water regimes and riverine vegetation habitat (see Section 3.2).

A pilot survey was undertaken to determine the presence of stygofauna within the area of the proposed Bulgarene borefield and the wider De Grey catchment (Goater & Horgan 2006). Although stygofauna were only collected from four of the 23 bores surveyed, this may be symptomatic of the bore locations rather than representative of distributions across the wider catchment.

Ten bores within the study area have also been surveyed as part of the 2002–2009 *Pilbara region biological survey* of the Department of Environment and Conservation (DEC). Data are yet to be published.

2.6 Land use and cultural values

The De Grey River area's potential as pastoral land was recognised by FT Gregory in 1861 (Anon. 1886). In 1863 a small party journeyed overland from Cossack and *'finding a large scope of good country...'* established the region's first sheep station on the De Grey. Although today cattle are grazed in preference to sheep, the station remains operational.

The De Grey River study area lies within the De Grey pastoral lease (Strategen 2006). Cattle graze over the area and the river pools are used for stock watering. Overgrazing by livestock and feral species such as pigs, donkeys and camels is regarded as the greatest threat to the regional environment and may contribute to soil erosion and river sedimentation (van Dam et al. 2005).

Mining occurs across the catchment, with numerous mines in the following reaches:

- upper (Woody Woody, Nullagine Gold and Sulphur Springs)
- middle (Moly Mines)
- lower (Atlas).

Mining impacts may arise through abstraction for operations and/or dewatering activities discharging to nearby creeks (WRC 2004).

The De Grey River's pools are important to the Ngarla people, traditional owners of the land incorporating the borefields (van Dam et al. 2005). Over the wider study area there are two other traditional owner groups, the Warrarn and Njamal, for whom permanent pools hold significance.

The pools are used for fishing, swimming, hunting, collecting, camping, teaching, meetings and ceremonial activities. Cultural values will be discussed further in a separate report.

3 Identification and description of groundwater-dependent ecosystems

The shallow alluvial aquifer of the De Grey River area supports groundwaterdependent ecosystems of three different types and their associated biotic elements:

- wetlands (riverine pools) aquatic macrophytes, phytoplankton, fish, macroinvertebrates and terrestrial vertebrate fauna
- riparian (river baseflow) phreatophytic vegetation and dependent terrestrial fauna
- aquifer ecosystems stygofauna.

The following information describes the De Grey's groundwater-dependent ecosystems, the communities/species they support, their conservation values and likely level of groundwater dependence. Conceptual models are then used to illustrate the hydrological support mechanisms of biotic communities in and adjacent to six key riverine pools (Homestead, J96, Bulgarene, Marloo, Coolenar, Muccangarra).

3.1 Wetland ecosystems

Hydrology

Numerous pools of varying permanence, size, depth and stability occur along the De Grey, Ridley, Shaw and Strelley rivers (Figure 11). An examination of key pool and bore hydrographs illustrates a high degree of connection between the aquifers and many permanent pools, including J96 Pool (Figure 12), Marloo Pool and Homestead Pool (Worley Parsons 2005). Semi-permanent and intermittent pools are also hydraulically connected to the shallow aquifer and are maintained by groundwater flow between flood events (Worley Parsons 2005).

Dames and Moore (1978) identified at least 20 pools within the Namagoorie borefield area, of which five were considered permanent or near-permanent. Recent pool mapping by the Department of Water suggests there are 30 permanent, 28 semi-permanent and 32 intermittent pools within the study area (DoW 2009). Pools <25 m in width were not identified in the mapping process (due to resolution of the imagery used), so the number of each pool type may actually be larger.

Although pools have been classified by permanence, the large flows that often occur in the De Grey are likely to have significant impacts on river morphology and to frequently alter the physical characteristics of pools. For example, station owners reported that Bulgarene Pool had 'moved' 100 m downstream in recent times (van Dam et al. 2005).

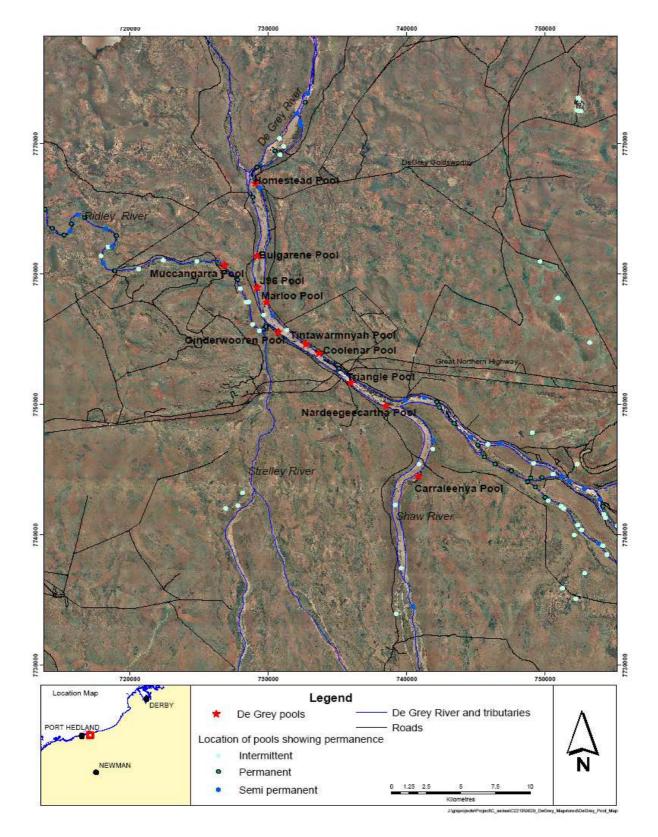


Figure 11 Location and permanence of De Grey River pools.

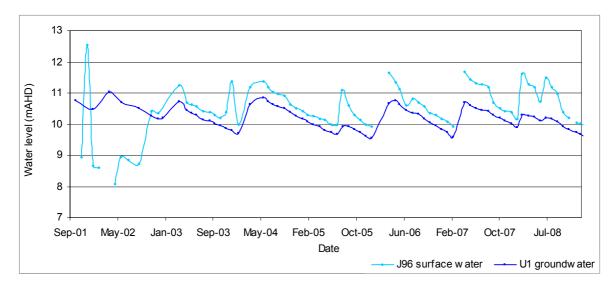


Figure 12 Relationship between groundwater at bore U1 and surface water levels at J96 Pool.

Ecology

The river pools support freshwater and marine fish species, macroinvertebrates, terrestrial vertebrate fauna, phytoplankton and aquatic macrophytes. Pool depth is thought to be more relevant to the ecology than pool size, as deeper pools (>2 m) hold water longer than intermediate (1-2 m) or shallow pools (<1 m), providing greater refuge value (van Dam et al. 2005).

Fish

Twenty of the 33 fish species known in the Pilbara have been recorded in the De Grey. Ten of these spend their entire lives in fresh water, four live predominantly in fresh water yet migrate to marine water to spawn (catadromous) and six are marine vagrants, spending most of their lives in coastal or oceanic waters, but occasionally venturing into freshwater environments (van Dam et al. 2005).

Van Dam et al. (2005) found a clear distinction between deep/intermediate and shallow pools with respect to fish diversity, richness and composition on the De Grey. This finding is consistent with studies elsewhere in the Pilbara (Morgan et al. 2009), where large-bodied species and adult fish were found to be generally restricted to more permanent deep/intermediate pools because they had greater habitat diversity, carrying capacity and refuge values.

The more permanent and stable deeper pools are the preferred habitat of a number of freshwater fish species, including the northern eel (*Anguilla bicolour*), bony bream (*Nematalosa erebi*), catfish (*Neosilurus hyrtlii*) and salmon catfish (*Arius graeffei*). Although the rainbow fish (*Melanotaenic australis*) also inhabits permanent pools, it is capable of rapidly colonising temporary pools and shallow areas. Spangled perch (*Leioptherapon unicolour*) and banded grunter (*Amniataba percoids*) can also rapidly

colonise temporary pools and shallows, with anecdotal evidence that the latter is capable of surviving in mud during drought (HGM 1998).

Table 4 describes freshwater fish habitat requirements or preferences taken from Beesley (2006), Morgan et al. (2003), Pusey et al. (2004), HGM (1998), Massini (1988) and Dames and Moore (1978).

Species	General description and habitat preferences
Northern eel (<i>Anguilla bicolour</i>)	A long-lived species estimated to reach maturity at 10 to 25 years. Once mature it migrates to the tropical deep sea to spawn. Only breeds once. Strongly restricted to permanent pools due to life history requirement for long-term stability.
Murchison River hardyhead (<i>Craterocephalus cuniceps</i>)	Permanent pools in either clear or turbid conditions. An extremely hardy species capable of surviving hypersaline conditions and a wide temperature range.
Salmon catfish (Arius graeffei)	A relatively long-lived species with relatively late maturity. Requires deep pools for incubation of eggs and larvae. Found mainly in deeper parts of permanent pools.
Rainbow fish (<i>Melanotaenic australis</i>)	Found throughout the Pilbara and Kimberley and into the Northern Territory in a wide range of habitats including shallow pools, streams and margins of deep pools. Relatively tolerant of a range of environmental conditions. Can rapidly colonise temporary pools.
Bony bream (<i>Nematalosa erebi</i>)	A widespread and common species of northern Australia and the inland rivers of south-eastern Australia. A detritivore commonly found in deep water in permanent and temporary pools. Susceptible to low dissolved oxygen.
Catfish (Neosilurus hyrtlii)	Very widespread species found across northern Australia where it inhabits a wide range of habitats. Mainly found in permanent pools.
Carp gudgeon (Hypseleotris compressa)	Found in flowing streams; congregates around fallen logs and other vegetative debris.
Spangled grunter/perch (<i>Leioptherapon unicolour</i>)	Widespread. Prefers lotic conditions but can achieve high abundances in large, deep, permanent pools. Can tolerate a range of environmental conditions. May survive in mud during drought.
Banded grunter (Amniataba percoids)	Widespread across northern Australia. Generally found in fresh flowing water. Large adults more common in deep, permanent pools; however, can rapidly colonise temporary pools.

Table 4Freshwater fish species recorded from the De Grey River.

Macroinvertebrates

Fifty-four macroinvertebrate taxa have been recorded from the De Grey system including two taxon not recorded elsewhere in the Pilbara: the beetle family Hydrochidae and the dragonfly family Macromiidae (van Dam et al. 2005). Although some taxa – predominantly the non-insects (Mollusca, Crustaceae, Acarina, Nematoda and Oligochaeta) – are at risk following pool drying, most De Grey taxa are either resistant to desiccation or avoid it through short life cycles completed in the course of the annual wet-dry season (van Dam et al. 2005).

Van Dam et al. (2005) found a difference in community structure between shallow and intermediate/deep pools. Although changes in pool depth may alter species composition, it is believed the De Grey's overall biodiversity would not be affected unless all pools were to dry out simultaneously.

Pinder and Leung (2009) agreed to some extent, concluding that pool depth, size and permanency were correlated to macroinvertebrate communities; yet not to the extent that would allow thresholds to be recognised. Their study indicated that other components of the physical and chemical environment – water chemistry, the cover, density and composition of macrophytes, sediment composition, organic material and aspects of the hydrological cycle – also influenced invertebrate communities. The most important drivers (although not strongly correlated) of both species richness and community composition were shown to be macrophyte cover and biomass, sediment type and nutrient loads. Pinder and Leung (2009) concluded it was important to maintain habitat diversity and adequate conditions in a variety of pools within the catchment to ensure the present suite of species persisted.

Vertebrate fauna

Although the De Grey pools provide distinct isolated habitat for fish (discussed previously) and a single freshwater turtle species (*Chelodina steindachneri*), they are also used opportunistically by a larger number of vertebrate species (HGM 1998). Waterbirds, waders and frogs are most strongly associated with this habitat type, with reptiles and both native and introduced mammals using the pools for foraging, shelter and drinking. Saltwater crocodiles have also been noted in the estuarine zone. Many of these species are mobile and capable of moving to other water sources in dry conditions.

Permanent pools may also be important to the productivity of surrounding landscapes. During the dry season, the abundance of flying adult insects in the riparian zone is likely to be much higher than the nearby steppe and savanna, providing important food sources for terrestrial consumers such as bats, reptiles, birds and spiders (Douglas et al. 2005).

Flora

Previous phytoplankton surveys (Massini & Walker 1989; Dames & Moore 1978; Massini 1988) recorded at least 29 species on the De Grey River (van Dam et al. 2005). Cyanophyta (blue-green algae) and Chlorophyta (green algae) generally dominate the flora with Bacillariophyceae (diatoms) also common.

Van Dam et al. (2005) concluded that water quality and pool size during the dry season had a greater impact on phytoplankton communities than pool depth, but that increased turbidity could also have an effect.

Although not common to all pools, macrophytic vegetation is an important ecological component of the De Grey, providing food and habitat for fauna. This was supported in the findings of a recent aquatic invertebrate habitat study (Pinder & Leung 2009), which concluded that species richness increased with increased biomass and cover of submerged macrophytes. Macrophytes are of increased importance in the De Grey, where pool substrates are relatively sandy and provide little habitat diversity.

To date at least seven of the 12 recorded Pilbara macrophyte species have been identified on the De Grey. The green macroalgae, *Chara* sp., which may have restricted distribution across the Pilbara, has also been recorded (van Dam et al. 2005). The most dominant species, *Vallisneria nana, Potamogeton pectinatus* and *Myriophyllum* sp., are submerged root angiosperms typically found only in permanent pools. *Schoenoplectus littoralis*, an emergent macrophyte (sedge), is found in similar conditions. *V. nana* provides important habitat for aquatic fauna and occurs at a depth range of 0–1.3 m, with maximum densities found at depths of 0.6 m (George et al. 2002).

Macroalgae reproduce by oospores, while all recorded aquatic macrophyte species reproduce by seed and some also by other means such as stem pieces, tubers and rhizomes (van Dam et al. 2005). Oospores and seed represent the most effective means of propagation for aquatic plants in ephemeral systems, providing resilience against prolonged drought.

Water quality

The De Grey's surface water quality has not been comprehensively assessed, although data exists from van Dam et al. (2005) and Pinder and Leung (2009), as well as from earlier studies (AUSRIVAS 2004; Dames & Moore 1978; Massini 1988; Massini & Walker 1989).

Unlike other river systems in which salinity increases with distance downstream, the situation in the De Grey is much more variable – with pool water quality reflecting that of the local groundwater. For example, Dames and Moore (1978) found saline groundwater surrounding a saline pool on the 'J' line of bores, and a fresh pool in an area of fresh groundwater near the Goldsworthy railway bridge. These results suggest that once flow ceases, the pools are maintained by groundwater from adjacent parts of the aquifer.

Van Dam et al. (2005) and Pinder and Leung (2009) assessed key physico-chemical parameters across 12 and eight pools respectively. Both studies found alkaline conditions (pH ~8-9) and generally clear waters (low turbidities); however salinities varied, with the earlier study reporting relatively high levels (EC measured as mS/cm) and the latter finding fresh water (TDS as mg/L) in all pools. This may be due to different measures of salinity or differences in the timing of sampling.

As part of the current assessment, Department of Water staff measured key physicochemical parameters in June 2009 in a subset of the previously assessed pools (Table 5). As the 2009 measurements were taken in pools close to established vegetation monitoring transects and not at the exact sites assessed by van Dam et al. (2005) or Pinder and Leung (2008), comparisons between 2009 and previous years were limited.

There was generally little temporal difference in physico-chemical parameters, yet there were some results of note. Although water temperatures were higher in the earlier assessments, this was most likely the result of sampling later in the season when ambient air temperatures would also have been higher. Dissolved oxygen (DO%), pH and conductivity (EC) were generally lower in 2009. It is likely that this reflects the influence of relatively fresh groundwater inflow during 2009 compared with more saline surface water inputs following high flows before the 2004 study. Commander, Martin and Doherty (2004) reported similar findings across the region, describing groundwater and pool salinities above normal recorded levels following large flow events and/or during exceptionally wet years.

Although groundwater quality can also have a major influence on surface water during periods of low flow (as shown by 2009 EC results for Muccangarra Pool), it is also variable. Groundwater salinity in Pilbara coastal aquifers generally increases with distance from the active channel due to decreasing recharge. However, in the De Grey, fresh water is available beyond the active channel due to the presence of the palaeochannel (Haig 2009). Despite this, a wide range of salinities exists in the area, ranging from 0–500 mg/L TDS along the Shaw River and its confluence with the De Grey and north of the Ridley River confluence, to >3000 mg/L TDS in an area of higher elevation west of the Ridley River (Haig 2009).

Pool*	temp			рН			EC (m	S/cm)		DO%		
	04	08	09	04	08	09	04	08	09	04	08	09
Homestead	24.3	29.4	-	8.6	9.0	-	1.4	-	-	82	-	-
Bulgarene	22.7	-	-	7.4	-	-	1.1	-	-	27	-	-
J96												
– channel	-	27.1	22.2	-	8.9	7.98	-	-	1.05	-	-	96.8
– main pool	28.7	-	24	8.6	-	8.44	1.9	-	1.53	123	-	109
Coolenar												
 downstream 	-	-	16.9	-	-	8.66	-	-	1.49	-	-	86.2
 highway xing 	-	-	19.5	-	-	8.86	-	-	1.53	-	-	126
Muccangarra	27.2	29.3	21.3	8.1	8.0	7.95	3.5	-	0.81	101	-	75.8
Unnamed pool (MX)	-	-	21.3	-	-	7.92	-	-	0.94	-	-	104
Junction	29.6	29.1	-	8.5	7.6	-	1.85	-	-	138	-	-
Namagoorie	25.6	30.1	-	8.5	8.6	-	1.8	-	-	107	-	-
Coongeenariner	27.6	27	-	8.4	8.4	-	1.7	-	-	131	-	-
Wardoo- moondene	27	28	-	7.9	8.7	-	1.6	-	-	86	-	-

Table 5 Physico-chemical parameters measured in 2004, 2008 and 200
--

*unless otherwise specified, parameters were measured at the edge of the pool.

Although conductivity remains generally higher than the ARMCANZ & ANZECC (2000) range reported for slightly to moderately disturbed wetland ecosystems, it is not uncommon for north-west Western Australian wetlands to have natural salinities higher than those in other regions.

Despite relatively good water quality, the De Grey pools are under pressure from surrounding land use. Pastoral activities across the catchment have the potential to degrade and thin native vegetation. This can lead to soil erosion and mobilisation of sediments, which in turn may cause pool infilling (van Dam et al. 2005). Stock access also has the potential to affect water quality, physically damage pool banks and cause further competition with native fauna for water resources.

Van Dam et al. (2005) and Pinder and Leung (2009) also measured nutrient levels – specifically total nitrogen (TN) and total phosphorus (TP) – linked to water quality problems including toxic algae blooms, hypoxia and declines in habitat values. Results showed the lowest concentrations were recorded in 2005 following a high flow event. This suggests that nutrient levels vary with time since the previous flushing event (high flow), however the season of survey and grazing pressures are also important.

Variations in water quality are also influenced by catchment geology. For example, high nitrate levels upstream in the Nullagine and Oakover rivers are mobilised in flow events, increasing levels in the De Grey (D Abbott pers. comm. 2009).

Sensitivity and conservation significance

Sensitivity

A desk-based sensitivity assessment of all fauna species known or thought to occur in the study area was conducted, taking into account potential impacts of groundwater decline on river pools and river vegetation (Outback Ecology Services 2004). Each species was assigned to one of three categories as described in Bamford (2003):

- low sensitivity show no preference for river pools or riverine vegetation
- moderate sensitivity make some use of habitat associated with river pools or riverine vegetation
- high sensitivity dependent on river pools and riverine vegetation and associated habitats.

The study identified species of 19 reptiles, 22 mammals and 89 birds with moderate sensitivity to groundwater decline (Outback Ecology Services 2004). Of these one mammal and five birds are of conservation significance (Table 6). Nine frog species, one reptile species and 46 bird species were considered to have high sensitivity to groundwater decline, including 12 birds of conservation significance.

Conservation significance

The De Grey River, from the confluence of the Nullagine and Oakover rivers to the Indian Ocean at Poissonnier Point, is listed in the *Directory of important wetlands in Australia* (Environment Australia 2001). The river meets three of the six criteria for inclusion in the directory, namely:

- it is a good example of a wetland type occurring within a biogeographical region of Australia
- it is a wetland which plays an important ecological or hydrological role in the natural functioning of a major wetland system/complex
- the wetland is of outstanding historical or cultural significance.

The area includes approximately 4500 ha of tidal wetlands consisting of mudflats, coastal flats, mangroves and about 22 km of tidal reaches (MWH Australia Pty Ltd 2007). Because mangroves are present, the De Grey is also recognised as a wetland of subregional significance (Kendrick & Stanley 2002). Carawine Gorge on the Oakover River and Skull Springs and Running Waters on the Davis River – all in the upper catchment of the De Grey – are also wetlands of subregional importance. In addition, at the extreme eastern extent of the De Grey River catchment, Rudall River and Savoury Creek are listed as a wild rivers (DoW 2009b).

The De Grey pools represent the some of the largest permanent river pools in northwestern Australia (Environment Australia 2001). Dames and Moore (1978) stated that the 'aquatic ecosystem is better developed in the De Grey River pools than in any other part of the northern or eastern Pilbara'. The pools are known or thought to support the following fauna:

- 54 of 101 macroinvertebrate taxa/families recorded in the Pilbara, including two new to the region (van Dam et al. 2005)
- 20 of 33 Pilbara fish fauna, probably the most diverse in the region (van Dam et al. 2005)
- nine species of frog, 145 birds (32 of conservation significance), 38 mammals (four of conservation significance) and 98 reptiles (two of conservation significance) may occur in the study area (Outback Ecology Services 2004).

Taxon	Level of sensitivity to groundwater decline	
	Moderate	High
Mammals	Pilbara leaf nose bat (<i>Rhinonicteris aurantius</i>)	_
Birds	 White-bellied sea-eagle (<i>Haliaeetus leucogaster</i>) Rainbow bee-eater (<i>Merops</i> ornatus) Fork-tailed swift (<i>Apus</i> paciflicus) Barn swallow (<i>Hirundo rustica</i>) Peregrine falcon (<i>Falco</i> peregrinus) 	 Great egret (<i>Ardea alba</i>) Cattle egret (<i>Ardea ibis</i>) Australian painted snipe (<i>Rostratula benghalensis</i>) Sharp-tailed sandpiper (<i>Calidris acuminata</i>) Curlew sandpiper (<i>Calidris ferruginea</i>) Broad-billed sandpiper (<i>Limicola falcinellusi</i>) limited records Marsh sandpiper (<i>Tringa stagnatillis</i>) Red-necked stint (<i>Calidris ruficollis</i>) Little curlew (<i>Numenius minutus</i>) Lesser sand plover (<i>Charadrius veredus</i>) Oriental plover (<i>Charadrius veredus</i>) Oriental pratincole (<i>Glareola maldivarum</i>)

Table 6Fauna of conservation significance sensitive to groundwater decline
(Outback Ecology Services 2004)

Van Dam et al. (2005) deemed that the ecological values of deep pools (>2 m) in terms of fish and macroinvertebrates were higher than those of intermediate pools,

which were in turn greater than the values of shallow pools. Deep pools provide refugia for resident species during dry periods, with intermediate pools offering additional carrying capacity and recruitment habitat for the same species during wetter times.

3.2 Riparian ecosystems

Ecology

The De Grey study area lies within the Pilbara region's Fortescue Botanical District (Beard 1975). HGM (1998) mapped four main vegetation types in the area, of which two support species commonly regarded as groundwater dependent:

- river red gum (*Eucalyptus camaldulensis*) and cadjeput (*Melaleuca argentea*) overstorey with varying understorey, fringing the river
- river red gum (*E. camaldulensis*) and coolibah (*Eucalyptus victrix*) on the floodplains.

Groundwater-dependent vegetation

The riparian tree species *E. camaldulensis* and *M. argentea* are widespread across floodplains in the Pilbara and the De Grey study area, with *E. victrix* common slightly higher in the landscape. These species are the most studied and understood of Pilbara riparian species.

Previous studies indicate that the shallow planform root system of *M. argentea* is adapted to areas of shallow groundwater (2–3 mbgl; m below ground level) and the species has difficulties adjusting to short periods of dry conditions (Graham 2001; Strategen 2006).

E. camaldulensis is also commonly associated with shallow depths to groundwater (2–5 mbgl), although it has been recorded where groundwater is up to 21 mbgl (Landman 2001). The bimorphic root system (surface lateral roots and a tap root) of this species enables it to access both groundwater and water held in the unsaturated, vadose zone above the watertable. Although *E. camaldulensis* is reported to be capable of sinking new tap roots in response to groundwater decline, drawdown of >10 m over a prolonged period may cause irreversible stress (Woodward-Clyde 1997).

Although both *E. camaldulensis* and *M. argentea* are phreatophytic (Muir Environmental 1995), it is thought they will access surface/flood water where available (O'Grady et al. 2002). Surface/flood waters also play an important role in reproductive morphology, with the period of greatest seedfall for both species timed to coincide with receding floodwaters (Pettit & Froend 2001). This ensures moist sediments are available to support seed germination and survival. Flood frequency is important because the small seeds of *E. camaldulensis* dry out quickly and do not become incorporated into the seedbank (Pettit & Froend 2001). Flood frequency and intensity also drives size and age class structure: immature, small individuals can be removed in relatively low-intensity flows and mature trees in large events.

E. victrix tends to be found in drier areas than *E. camaldulensis* and *M. argentea* (Muir Environmental 1995). Although tolerant of long periods of drought and less susceptible to drawdown, this species appears sensitive to prolonged inundation (Strategen 2006).

The tree species *Sesbania formosa, Atalaya hemiglauca, Ficus aculeata* and *Corymbia flavescens* also occur in the riparian and floodplain zones. Although less well studied than other riparian species, their habitat preferences suggest they are poorly adapted to low moisture availability and likely to be accessing groundwater. *S. formosa* is restricted to alluvium and creek lines or rivers (Paczkowska & Chapman 2000), indicating the potential for a high level of groundwater use. *A. hemiglauca* occurs on floodplains and clayey soils, and *C. flavescens* along drainage lines and floodplain, suggesting a lower degree of groundwater use. *F. aculeata* occurs on floodplain margins and creek edges as well as in gorges and at the base of cliffs (DEC 2009), suggesting a preference for moisture-rich environments and, at the De Grey, an opportune use of groundwater rather than obligate dependence.

Fauna

E. camaldulensis/M. argentea woodlands and forests fringing the De Grey provide habitat for terrestrial fauna, including reptiles, mammals and avifauna. Although most species would not be directly affected by groundwater decline, any loss of habitat may have an indirect impact.

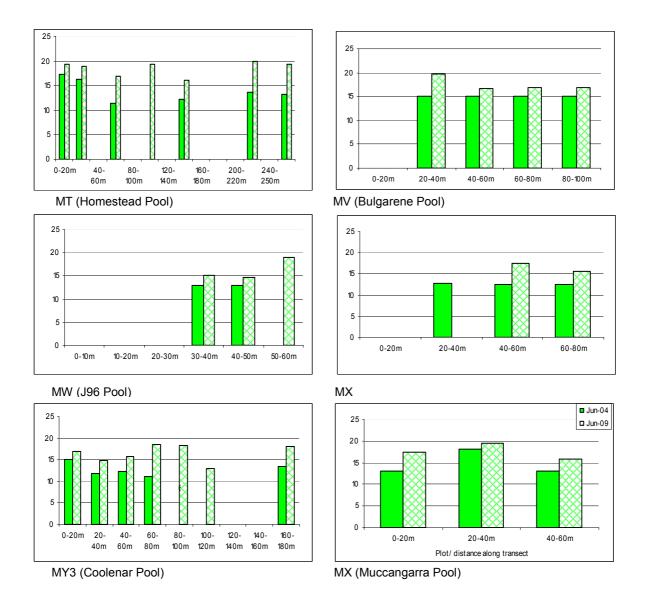
Bird fauna relying on the riparian vegetation for feeding, breeding and habitat are thought to be sensitive to groundwater regime change (Outback Ecology Services 2004). Although they are mobile and can relocate to other suitable areas, there is the potential for over-population of habitats and overall reduction in carrying capacity.

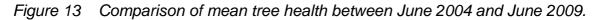
Bats and some small mammal species are also relatively sensitive. Of the small mammals, *Dasyurus hallucatus* (northern quoll) and *Ningaui timealeyi* (Pilbara ningaui) are believed to be the most sensitive due to their preference for habitats associated with creek and drainage lines (Outback Ecology Services 2004). Any of the bat species known from the area, such as *Nyctophilus arnhemensis* (northern long-eared bat), *N. bifax daedelus* (eastern long-eared bat), *N. geoffroyi* (lesser long-eared bat), *Chalinolobus gouldii* (Gould's wattled bat) or *Scotorepens greyii* (little broad-nosed bat), are likely to rely on riverine vegetation for habitat and to feed on invertebrates living in tree canopies (Outback Ecology Services 2004).

Vegetation condition

Condition assessments were carried out in conjunction with vegetation community mapping by HGM (1998) and Strategen (2006). HGM also undertook biannual treestress monitoring at 10 sites across the Bulgarene borefield during 2000, 2001 and 2002 (HGM 2001a; HGM 2001b; HGM 2002b; HGM 2002a).

HGM (1998) assessed vegetation condition based on the ratio of introduced to native species, the nature and degree of disturbance and the degree of change to community structure. Results showed vegetation along the river banks was in very good condition, possibly due to the greater availability of water. However, other vegetation was classified as completely degraded. Exotic species were found to dominate the understorey across the study area.


The purpose of the HGM biannual monitoring program was to detect biological responses of indicator species (overstorey) to groundwater extraction. Results showed a decline in tree health from December 2000 to August 2002 for *E. camaldulensis, E. victrix* and *M. argentea*. Above-average rainfall before the initial assessment and below-average rainfall at the end of the monitoring period were thought to be the cause (HGM 2002b).


Strategen (2006) assessed the tree-canopy condition of *E. camaldulensis* and *M. argentea* at 10 transects along the De Grey as part of a study into the sensitivity of vegetation to groundwater decline. Six of the transects were re-assessed in June 2009 as part of the current EWR project (appendices B and C).

Comparison of the 2004 and 2009 results showed an increase in mean canopy condition across all re-assessed transects (Figure 13; Appendix B). This may simply be a result of different individuals undertaking the assessment or may reflect an increasing trend in groundwater levels (see Section 2.3).

Results from the current monitoring also showed that some trees had collapsed and others had been lost from transects, most likely as a result of high-flow events. Exotic species continued to dominate the understorey as reported by HGM (1998) and Strategen (2006). Although the understorey of most transects remained dominated by the exotic grasses *Cenchrus ciliatus* and *Cynodon dactylon*, species richness at all sites was greater during the 2009 assessment (Appendix B).

Although these data provide some insight into temporal changes in vegetation condition, monitoring techniques are somewhat subjective and subsequent analyses insufficient to fully explore relationships between changes in groundwater levels and vegetation health. The use of quantitative techniques, such as tree water use (sapflow and associated methods) and water sources accessed (deuterium analysis), would provide greater insight into the relationship between the dominant species at the De Grey (*E. camaldulensis* and *M. argentea*) and response to changes in groundwater availability. However, these methods are expensive and time consuming and are beyond the scope of the current study.

Conservation significance

Searches of DEC's Threatened (Declared Rare) Flora and the Western Australian Herbarium Specimen databases identified 12 priority species in the general area. None of these species have been identified in vegetation surveys to date (Strategen 2006); however, *Abutilon trudgenii, Acacia glaucocaesia* and *Euphorbia clementii* are known from the study area. Although *A. glaucocaesia* may occur on floodplains (DEC 2009), as a woody shrub it is likely to have a shallow root system – suggesting it is not groundwater dependent. *A. trudgenii* is also a herbaceous species and unlikely to be phreatophytic. *E. clementii* is generally found on gravelly hillsides or stony grounds (DEC 2009) and is therefore also unlikely to be phreatophytic.

3.3 Aquifer ecosystems

Aquifers in the Pilbara region have been associated with diverse subterranean fauna. Although most studies in the region have been of calcrete aquifers, recent surveys of the alluvial De Grey aquifer have also yielded stygofauna (Goater & Horgan 2006).

In a recent survey, taxa from three higher taxonomical groups were identified: class Oligochaeta, class Maxillopoda (order Harpacticoida), and class Malacostraca (order Amphipoda) (Goater & Horgan 2006). Although stygofauna were only collected from four (17/96, 20/96, I2 and Q2) of the 23 bores surveyed, this may be symptomatic of the bore locations rather than representative of distributions across the wider catchment. Conservation status of these fauna was undetermined.

Twelve stygofauna taxa were identified when potential impacts of mining in the nearby Ord Ranges were assessed. Although none of the study sites were within the De Grey alluvial aquifers, this finding suggests stygofauna are widespread across the study area.

Ten bores within the study area have also been surveyed as part of the DEC's 2002–2009 Pilbara region biological survey. Data are yet to be released.

3.4 Conceptual models of groundwater dependence

Depth to groundwater is often the most important attribute at sites relying on subsurface provision of groundwater (phreatophytic vegetation), whereas depth and frequency of inundation appear most important to ecosystems relying on both surface expressions of groundwater and overland flows of surface waters (floodplains, wetlands, baseflow rivers) (Eamus et al. 2006).

In this study, ground and pool water levels, combined with surface elevations (vegetation transects and bathymetry), vegetation mapping (riparian and aquatic) and occurrence of pool biota (fish and macroinvertebrates), have been used to model a conceptual understanding of groundwater dependence.

As biota and water quality have been assessed at the five pools where pool water levels are monitored (Homestead, Bulgarene, J96, Marloo and Muccangarra), these pools have been selected as the key sites along with Coolenar Pool (see Figure 11). Conceptual models for each site depict groundwater-dependent ecosystems reliant on subsurface and/or surface expressions of groundwater.

Coolenar Pool

Coolenar Pool (Figure 14) is located at the crossing of the Great Northern Highway. Although this pool's biota has not been assessed, Strategen (2006) established a vegetation monitoring transect (MY3) towards the pool's downstream extent. Elevations measured across the transect have been combined with a lithological cross-section of the adjacent E-line bores (Haig 2009) to depict surface elevations and lithology across a line running approximately 5.7 km east from the crossing. Groundwater levels from bore 7/04 and three of the E-line bores (E1, E3 and E4) as well as surface water levels from Coolenar Pool were used to determine recent (2002–08) mean maximum and minimum levels across the site. Vegetation mapping and MY3 transect data were then used to depict vegetation distribution.

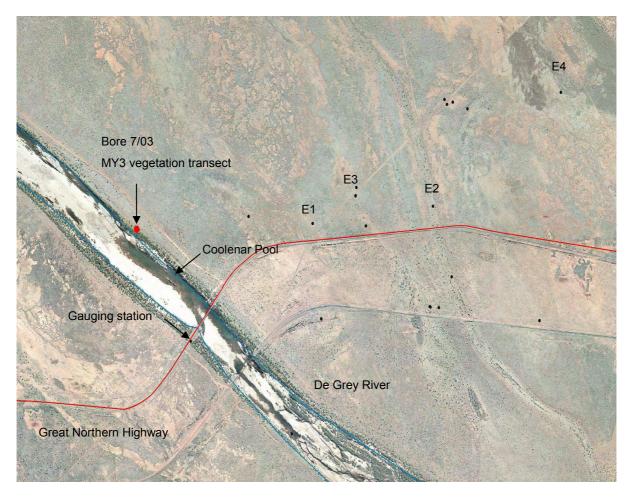
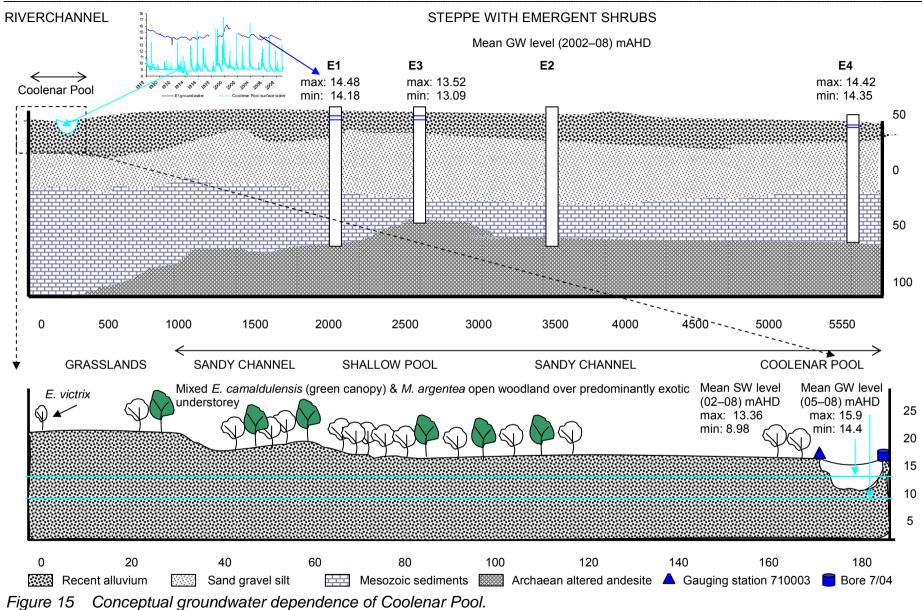



Figure 14 Location of Coolenar Pool, bores, gauging station and vegetation transect.

The conceptual model shows average depths to groundwater (2002–08) of the E-line bores, ranging from a minimum of 7.38 m and a maximum of 7.55 m at E4, to 10.3 m and 10.7 m at E3 (Figure 15). Average depths (2005–08) at bore 7/04 (near the pool and vegetation transect) range from 5.99 m to 7.53 m.

In this area the groundwater table exists entirely within the recent alluvium. This is supported by stratigraphy from bore 7/04, which indicates a silt/sand/clay layer to a depth of 8 m with gravel/clay/sand to 18 m.

As pool bathymetry is currently unknown, depth cannot be accurately determined; however, stage height data suggests Coolenar Pool can reach depths of greater than 8 m when in full flood, reducing to 1–2 m during dry periods (Figure 15).

As previously discussed, the riparian tree species *E. camaldulensis* and *M. argentea* are phreatophytic (groundwater dependent). Minimum and maximum elevations (mAHD) at which each species occurred across the MY3 transect were measured to determine their elevational distribution. These values were then compared with mean groundwater levels (2005–08) to determine current ranges in depth to groundwater as follows:

- Melaleuca argentea: -0.36 m to 5.94 m
- Eucalyptus camaldulensis: -0.41 m to -5.04 m.

At shallow depths to groundwater (0-3 m) *E. camaldulensis* and *M. argentea* are highly groundwater dependent, with individuals at greater depths (3-6 m) showing slightly less dependence. However, it is probable that *E. victrix* and *C. flavescens* individuals also exhibit a degree of dependence when they occur where the watertable is less than 10 m below the ground surface.

Although macrophytes have not been surveyed specifically, dense beds of *Potamogeton pectinata* were noted along the pool's edge near the highway crossing. Fauna surveys have not been carried out to date; however, the size and apparent permanency of Coolenar Pool suggests it would support fish, macroinvertebrate and bird populations similar to other permanent pools of the same size. There is also anecdotal evidence of saltwater crocodiles occasionally moving upriver during flood events and being stranded in the pool as flood waters recede.

Marloo Pool

Marloo Pool is downstream of the highway crossing on the east bank of the main channel. Pinder and Leung (2009) and van Dam et al. (2005) assessed water quality and pool biota, describing the pool as likely to be permanent to semi-permanent and to support fish, macroinvertebrates and aquatic macrophytes. Strategen (2006) recorded species distribution and condition across a vegetation transect.

To develop a conceptual model for this site, elevations measured across the transect have been combined with water levels from Marloo Pool (mean maximum and minimum, 2004–08) and vegetation transect data.

The conceptual model (Figure 16) shows surface water levels range from 12.23 mAHD to 13.88 mAHD. Although van Dam et al. (2005) recorded a maximum depth of 3.4 m, pool bathymetry is currently unknown and actual depth cannot be determined. Groundwater data from a nearby bore (Marloo Bore) were not available.

Elevational distributions of *E. camaldulensis* and *M. argentea* across the transect were measured previously (Strategen 2006). Extrapolation of pool water level data allows calculation of the current (2002–08) depth to groundwater ranges for each species across the vegetation transect as follows:

- Melaleuca argentea: -0.90 m to -2.80 m
- Eucalyptus camaldulensis: -1.10 m to -4.60 m.

At these shallow depths to groundwater, *E. camaldulensis* and *M. argentea* are likely to be highly groundwater dependent. However, *F. opposita* also occurs where the watertable is less than 10 m below the ground surface, suggesting a degree of groundwater use.

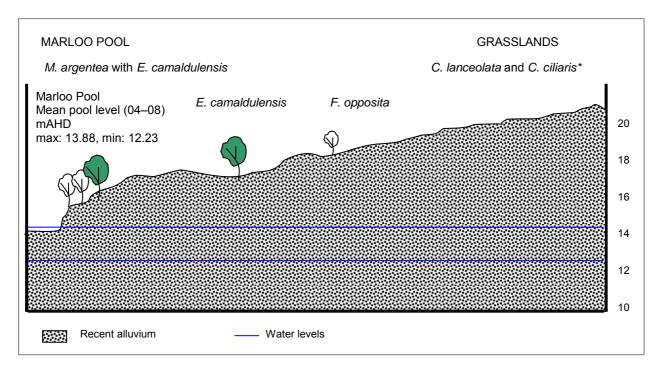


Figure 16 Conceptual groundwater dependence of Marloo Pool.

J96 Pool

J96 Pool is on the west side of the main De Grey channel downstream of Marloo Pool. Extensive areas of shallow water (<0.5 m) with a narrow zone of deeper water (up to 1.7 m) occur along the western bank (van Dam et al. 2005). Pinder and Leung (2009) and van Dam et al. (2005) assessed water quality, biota and vegetation. Although it was suggested that the pool might dry out in some years, it was found to support fish, macroinvertebrates and aquatic macrophytes.

The conceptual model was developed using site elevations measured across the MW vegetation transect (Strategen 2006), water levels from J96 Pool (2002–08), groundwater levels and elevations from nearby bore U1 (2002–08) and vegetation data.

The conceptual model (Figure 17) shows mean pool water levels range from 9.76 mAHD to 11.31 mAHD. Groundwater data from U1 (2002–08) showed mean levels similar to the pool, ranging from 9.77 mAHD to 10.77 mAHD. As pool bathymetry is currently unknown, actual depth cannot be determined; however, van Dam et al. (2005) recorded a maximum depth of 1.7 m. At this time (September 2004), the pool level was 10.91 mAHD and local groundwater was 10.51 mAHD.

The elevational distribution of *E. camaldulensis* and *M. argentea* and current pool level data (2002–08) were used to calculate depth to groundwater ranges for each species as follows;

- Melaleuca argentea: -0.29 m to -2.94 m
- Eucalyptus camaldulensis: -1.99 m to -5.34 m.

At these shallow depths to groundwater *E. camaldulensis* and *M. argentea* are highly groundwater dependent. However, it is probable that individual *F. opposita* and *A. hemiglauca* also exhibit a degree of dependence when they occur where the watertable is less than 10 m below the ground surface.

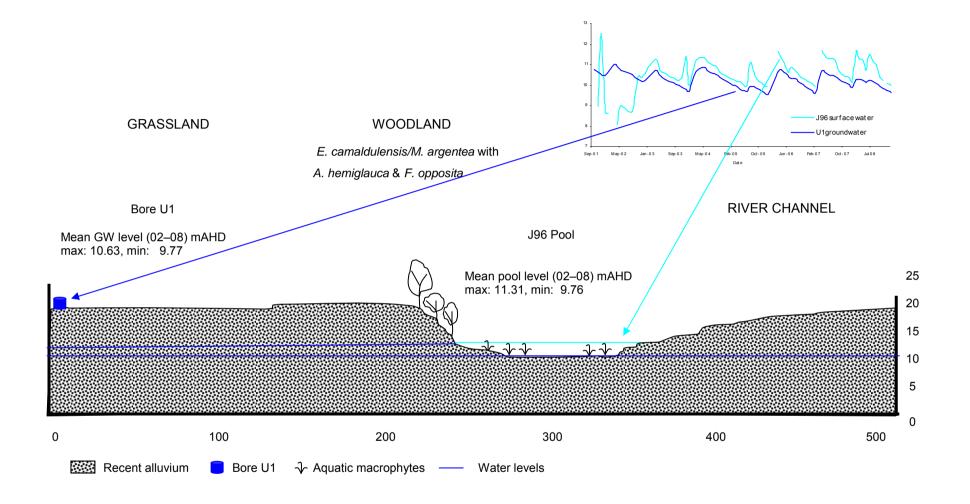


Figure 17 Conceptual groundwater dependence of J96 Pool and surrounds.

Bulgarene Pool

Bulgarene Pool is on the eastern side of the De Grey within the existing borefield. Although the pool is thought to dry out in most years and is unlikely to act as a drought refuge, when inundated it supports fish, macroinvertebrates and aquatic macrophytes.

Site elevations measured across the MV vegetation transect, water levels from Bulgarene Pool (2002–08), groundwater levels and elevations from nearby bore 8/04 (2002–08) and vegetation transect data were used to develop the conceptual model (Figure 18).

The model shows mean pool water levels (2002–08) range from 9.38 mAHD to 10.83 mAHD. As pool bathymetry is currently unknown, actual depth cannot be determined; however, van Dam et al. (2005) recorded a maximum depth of 0.62 m. Groundwater data from bore 8/04 (2005–09) showed mean levels ranging from 9.07 mAHD to 9.97 mAHD.

The elevational distribution of *E. camaldulensis* and *M. argentea* and current pool level data (2002–08) were used to calculate depth to groundwater ranges for each species as follows:

- Melaleuca argentea: +0.63 m to -7.07 m
- Eucalyptus camaldulensis: -5.57 m to -7.07 m.

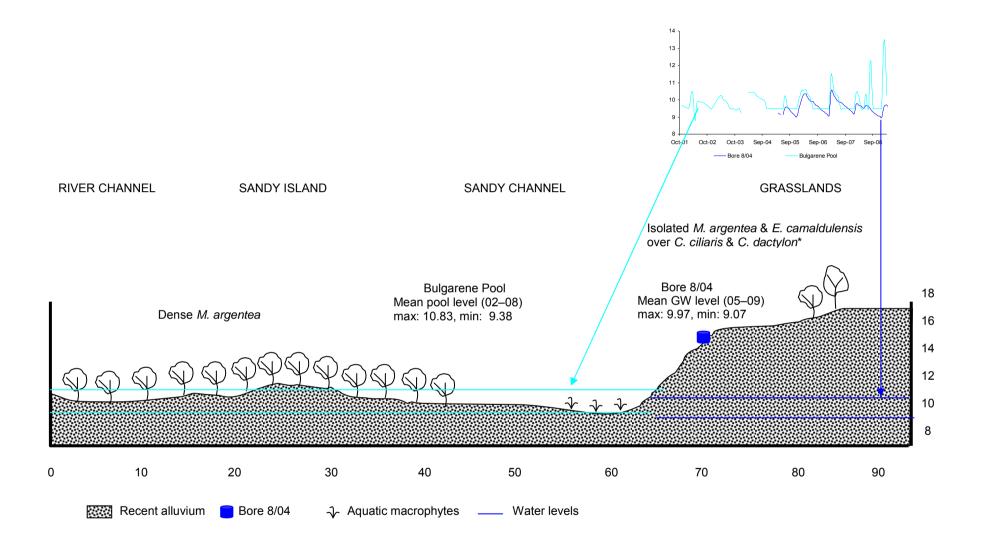


Figure 18 Conceptual groundwater dependence of Bulgarene Pool and surrounds.

Homestead Pool

Homestead Pool is a large (~25 ha) deep pool on the eastern bank of the river adjacent to the De Grey Station homestead. Water and biota were assessed by van Dam et al. (2005) and Pinder and Leung (2009) and a vegetation transect (MT) established upstream (Strategen 2006). As a deep permanent pool, Homestead Pool acts as an important drought refuge supporting fish, macroinvertebrates and aquatic macrophytes.

The conceptual model (Figure 19) was developed using vegetation transect data and elevations and pool water levels. The model shows mean groundwater levels (2002–08) ranged from 6.17 mAHD to 8.09 mAHD. Although pool bathymetry is unknown, van Dam et al. (2005) recorded a maximum depth of 3.73 m. They also noted extensive shallow areas at the upstream and downstream ends of the pool.

The elevational distribution of *E. camaldulensis* and *M. argentea* and recent pool level data (2002–08) were used to calculate depth to groundwater ranges for each species as follows:

- Melaleuca argentea: -1.81 m to -3.83 m
- Eucalyptus camaldulensis: -2.16 m to -7.33 m.

At shallow depths to groundwater (e.g. 0-3 m) *E. camaldulensis* and *M. argentea* are highly groundwater dependent, with individuals at greater depths (3-6 m) showing slightly less dependence. However, it is also probable that *F. opposita* individuals also exhibit a degree of dependence when they occur where the watertable is less than 10 m below the ground surface.

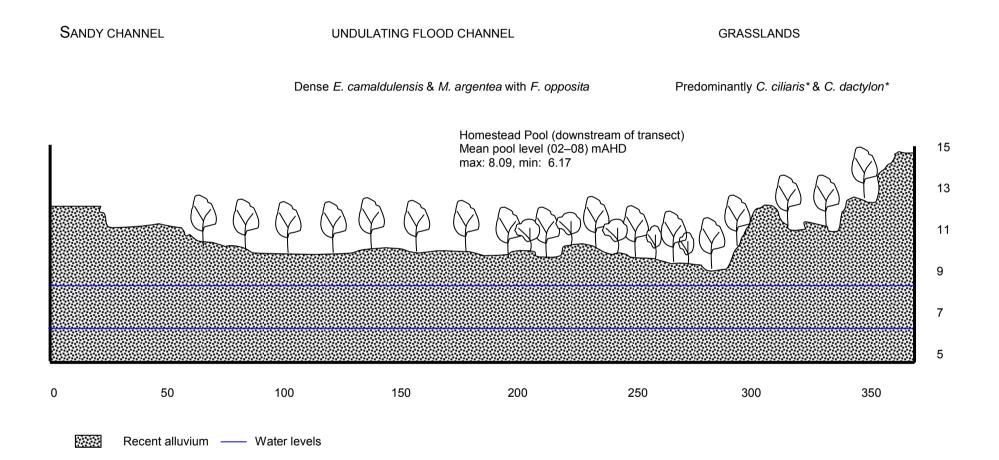


Figure 19 Conceptual groundwater dependence of Homestead Pool and surrounds.

Muccangarra Pool

Muccangarra Pool is a long, narrow, deep pool on the Ridley River west of the De Grey. It is of cultural significance to the Ngarla people. Van Dam et al. (2005) described Muccangarra as atypical of pools on the main river channel due to its well-defined nature and dense riparian vegetation. Based on the presence of flood debris on the downstream side of riparian trees and the 'upstream lean' of many individuals, van Dam et al. (2005) concluded that the Ridley River receives significant backflow when the De Grey is in flood. They also stated that a large rock bar at the downstream end is likely to help stabilise the pool.

Water and biota were assessed by van Dam et al. (2005) and Pinder and Leung (2009). They found, because of its size and depth, that Muccangarra acts as an important drought refuge for macroinvertebrates and fish. Although the depth of the pool excludes aquatic macrophytes from all but a few isolated and shallow backwater areas (van Dam et al. 2005), where beds do occur they are very dense (Pinder & Leung 2009).

Transect elevations (transect MZ) (Strategen 2006), vegetation data and pool water levels were used to develop a conceptual model of groundwater dependence (Figure 20). The model shows mean groundwater levels (2004–08) ranged from 8.81 mAHD to 10.47 mAHD. Although pool bathymetry is unknown, van Dam et al. (2005) recorded a maximum depth of 7.03 m, making Muccangarra the deepest pool assessed to date.

The elevational distribution of *E. camaldulensis* and *M. argentea* and updated pool level data (2004–08) were used to calculate depth to groundwater ranges for each species as follows:

- Melaleuca argentea: -0.23 m to -2.79 m
- Eucalyptus camaldulensis: -0.83 m to -7.41 m.

As with other pools, individuals over a watertable <3 m below the surface are likely to be highly groundwater dependent, with trees at greater depths showing lesser degrees of dependence.

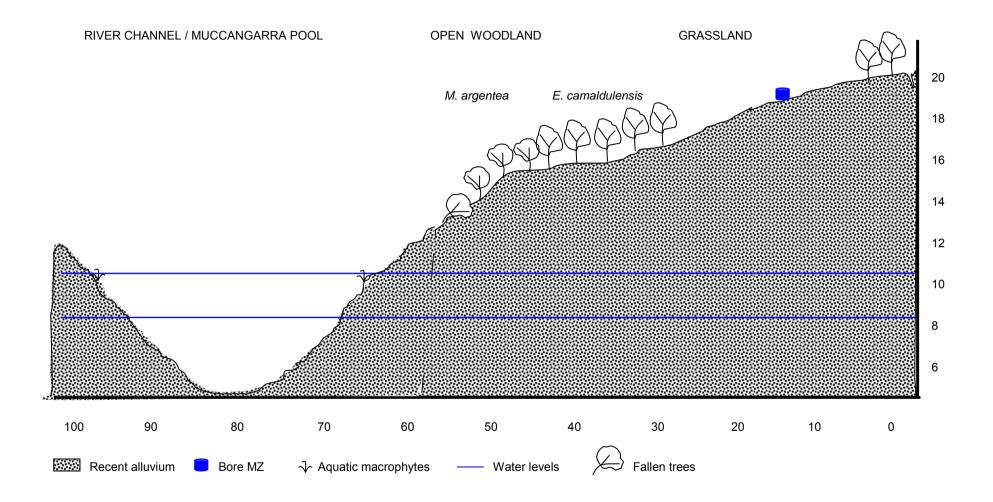


Figure 20 Conceptual groundwater dependence of Muccangarra Pool and surrounds.

3.5 Summary of ecological values

In this study, groundwater-dependent ecosystems of three different types have been identified and described in the De Grey River area: wetlands (riverine pools), riparian vegetation and aquifers. This section provides a summary of the ecological values of each type of groundwater-dependent ecosystem. Values are divided into the following categories following Horwitz and Rogan (2003):

- biotic key species and/or communities (including rare or threatened biota)
- functional ecosystem services that maintain habitat for dependent populations or species
- land/waterscape contributions to landscape connectivity, habitat provision, representativeness and ecosystem resilience to disturbance.

Cultural values will be discussed in a separate report.

Wetlands

Numerous pools of varying size, depth and permanency occur along the De Grey, Ridley, Shaw and Strelley rivers. They are hydraulically connected to the aquifers and maintained by groundwater flow between flood events. Recent pool mapping (DoW 2009a) suggests there are 30 permanent, 28 semi-permanent and 32 intermittent pools within the study area.

Biotic values

The De Grey pools are known or thought to support the following flora and fauna:

- 29 species of phytoplankton
- seven of the Pilbara's 12 known macrophyte species
- 54 of 101 macroinvertebrate taxa/families known to the region
- 20 of 33 Pilbara fish species (possibly most diverse in the region)
- nine frog species
- 145 bird species (32 of conservation significance)
- 38 mammal species (four of conservation significance)
- 98 reptile species (two of conservation significance).

Functional values

The pools maintain key ecological processes important to habitat provision including:

- water quality
- nutrient cycling associated with productivity
- decomposition of organic carbon required for food webs.

Land/waterscape values

The De Grey pools and the river itself hold a number of broader-scale and regional values. These include:

- connectivity hydrological linking of pools plays an important role in the natural functioning of a major wetland system
- habitat provision pools act as a drought refuge for native flora and fauna
- representativeness the river is a good example of wetlands of the surrounding region
- resilience the health/condition of the pools and river allow them to absorb seasonal changes (drought/flood).

Riparian vegetation

The pools and shallow groundwater adjacent to the De Grey support two riparian vegetation community types:

- *Eucalyptus camaldulensis* (river red gum) / *Melaleuca argentea* (cadjeput) woodland/dense forest
- *Eucalyptus camaldulensis* (river red gum) and *E. victrix* (coolibah) on floodplains.

Biotic values

Riparian vegetation supports the following fauna:

- birds
- mammals, including up to five bat species
- reptiles
- macroinvertebrates.

Functional values

Riparian vegetation maintains key ecological processes important to habitat provision including:

- maintenance of water quality through biofiltration
- soil/bank stabilisation
- mediating microclimate
- supports complex food webs.

Landscape values

Riparian vegetation of the De Grey supports the following landscape values:

 connectivity – vegetation provides corridors allowing fauna to move between habitats (e.g. pools)

- habitat provision vegetation provides both direct habitat and refuge habitat during drought
- representativeness vegetation communities are good examples of riparian ecosystems of the region
- resilience the health/condition of vegetation allows it to absorb seasonal changes (drought/flood).

Aquifers

Biotic values

Aquifers in the Pilbara region have been associated with diverse subterranean fauna. Although studies within the De Grey's alluvial aquifers have been limited, stygofauna have been identified across the area.

4 Ecological management objectives

Formulating management objectives for a water resource system is an integral component of the allocation planning process. Objectives presented in this report are based solely on ecological values and issues identified during the review of ecological information. In the final allocation plan, management objectives will be informed by social, cultural and economic values.

Ecological management objectives influence all aspects of ecosystem management including:

- determining the study area
- identifying management triggers
- designing and implementing a monitoring program
- reporting of outcomes
- subsequent response of management within an adaptive management framework.

Without a clear statement of objectives, the success or otherwise of any management plan cannot be assessed. Because the stated objectives are often very general or conceptual in nature, the challenge is to translate them into practical targets and performance indicators that can be measured in the field. The management system must also be able to detect and correct mistakes before unacceptable damage is done.

This review has identified groundwater-dependent ecosystems of three different types associated with the De Grey River – riverine pools, riparian vegetation and aquifers – as well as their associated ecological values. Management objectives are now required to ensure these values are maintained and considered in future water resource planning.

The overarching management objective for the De Grey is to:

• maintain the ecological characteristics of the site in the context of a naturally variable climate.

The ecological investigations discussed in this report indicate that pools support a number of key ecosystem processes. These include the maintenance of:

- in-stream foodwebs (aquatic vegetation, macroinvertebrates etc.)
- fringing riparian vegetation
- floodplain vegetation
- pool water quality
- connectivity.

The following generic management objectives have been developed for the ecological components of the De Grey River pools that drive/maintain these processes:

Macroinvertebrates: maintain species richness and composition through maintenance of:

- macrophyte habitat inundated and available for a range of macroinvertebrate species
- available surface water expression consistent with regional seasonality.

Fish: maintain species richness and composition through maintenance of:

- shallow macrophyte habitat inundated and available for small-bodied fish and juveniles of large-bodied fish
- deeper habitat permanently inundated and available for mature and largebodied fish species.

Frogs and reptiles: maintain species richness and composition through maintenance of:

• permanent surface water with seasonal fluctuation to provide frog and turtle habitat

Vegetation: maintain species richness, composition and extent through maintenance of:

- permanent inundation of pools to support aquatic macrophytes
- permanent available soil moisture and occasional inundation of all riparian and floodplain vegetation
- maintaining depth to groundwater within the range required by phreatophytic species and within the context of the regional climate.

Pool water quality: maintain water quality through maintenance of:

- sufficient depth in deep pools to ensure dissolved oxygen levels do not reduce to anoxia
- occasional high-level flows to scour the sediment.

The ecological management objectives described here, as well as the social and cultural values to be addressed in the future, will inform the development of ecological water requirements for the De Grey River. In this process they will be used to frame estimates of water requirements specifically related to those potentially impacted by groundwater abstraction. In addition, they will provide the basis for a potential future ecological monitoring program.

Appendices

Appendix A Photos

Plate 1 Dense Eucalyptus camaldulensis/Melaleuca argentea forest at Homestead Pool (and high water mark in January 2010)

Plate 2 Buffel grass dominated understorey near Homestead Pool.

Plate 3 Muccangarra Pool.

Plate 4 Floodplain south of the Great Northern Highway crossing.

Plate 5 Shaw River/De Grey River confluence.

Plate 6 Permanent pool south of Great Northern Highway crossing.

Appendix B Vegetation transect species lists and abundances 2009

Date	Transect	Quadrat	Distance	Comp	•		Abundance	% cover
23/06/2009	MT	1	0–20	MB		Atalaya hemiglauca (s)	23	0.5
	729579E	7766439N				Cenchrus ciliaris		20
					MB01	Papilionacea sp.	10	0.1
						Ficus opposita (s)	1	0.1
						Eucalyptus camaldulensis	1	0.2
						Passiflora foetida	1	0.1
						Cucumis melo	1	0.01
						<i>Acacia</i> sp.	1	0.1
		2	20–40	MB		Atalaya hemiglauca (s)	29	1
						Cenchrus ciliaris		1
						Cynodon dactylon		2
					MB01	Papilionacea sp.	4	0.02
						Ficus opposita (s)	3	1
						Cucumis melo	1	0.01
						<i>Sida</i> sp.	6	0.1
						Carissa lanceolata	1	1
		3	60–80	MB		Atalaya hemiglauca (s)	9	1
						Cenchrus ciliaris		2
						Cynodon dactylon		20
						Erythrina vespertilio	1	0.2
					MB03	<i>Tephrosia</i> sp.	1	0.05
						Solanum nigricans	2	0.05
					MB02	Argemone ochroleuca	43	0.5
						Eucalyptus camaldulensis	1	0.2
						Alternanthera nodiflora	1	0.01
		4	100–120	MB		Cynodon dactylon		60
					MB02	Argemone ochroleuca	15	0.1
						Alternanthera nodiflora	1	0.01
						Solanum nigricans	1	0.01
		5	140–160	MB		Cynodon dactylon		60
					MB02	Argemone ochroleuca	100	3
					MB03	<i>Tephrosia</i> sp.	1	0.05
						Ficus opposita (s) Eucalyptus camaldulensis	1	0.5
						(s)	2	0.25
			220	MB		Cynodon dactylon		10
						Eucalyptus camaldulensis	9	1
					MB02	Argemone ochroleuca	10	
					MB04	White one-sided	100	10
					MB03	Tephrosia sp.	1	0.1
			250	MB	MB04	White one-sided	150	10
						Cynodon dactylon		4
						Cenchrus ciliaris		0.1
						Eucalyptus camaldulensis (s)	17	3
						(3)	17	5

Date	Transect	Quadrat	Distance	Comp	Coll.	Species	Abundance	% cover
23/06/2009	MV	1	20–40	MB		Ficus opposita (s)	8	0.5
	730154E	7763139N				Cynodon dactylon		20
						Eucalyptus camaldulensis (s)	2	0.05
						Cenchrus ciliaris	-	2
		2	40–60	MB		Crotalaria novae-hollandiae	3	0.05
						Cynodon dactylon		3
						Sesbania formosa (s)	1	0.02
		3	60–80	MB		Ficus opposita (s)	4	0.2
						Cynodon dactylon		3
						Cenchrus ciliaris		1
						Calotropis sp.	1	0.5
					MB06	Ipomea muelleri	1	0.8
						Eucalyptus camaldulensis	1	0.1
					MB05	Urochloa sp.		1
		4	80–100	MB		Cynodon dactylon		5
						Solanum nigricans	1	0.2
						Cenchrus ciliaris		2
					MB04	White one-sided	1	0.1
						Cyperus vaginatus	1	0.01
						Alternanthera nodiflora	2	0.05
24/06/2009	MW	1	0–10	MB		Cenchrus ciliaris		5
	729070E	2	10–20m	MB		Cenchrus ciliaris		5
	7761336N					Corchorus sp.	1	0.2
		3	20–30	MB		Cenchrus ciliaris		15
					MB03	<i>Tephrosia</i> sp.	2	0.1
		4	30–40	MB	MB03	<i>Tephrosia</i> sp.	8	1
						Cenchrus ciliaris		8
						Cynodon dactylon		2
		5	40–50	MB		Cynodon dactylon		3
						Atalaya hemiglauca (s)	1	0.2
						Acacia farnesiana	1	0.05
		6	50–60	MB		Cynodon dactylon		0.1
24/06/2009	MZ	1	0–20	MB	MB03	Tephrosia sp.	55	2
	727075E	7760395N				Lysiphyllum cunninghamii (s)	1	0.2
			00.40			Cenchrus ciliaris		1
		2	20–40	MB	MB03	Tephrosia sp.	37	4
						Cenchrus ciliaris		0.5
		2	40–60		MB03	Cynodon dactylon	10	2
		3	40-60	MB	INIBU3	Tephrosia sp. Cynodon doetylon	13	1.5 30
						Cynodon dactylon Ficus opposita (s)	1	0.1
						Atalaya hemiglauca (s)	1 1	0.05
					MB04	White one-sided	1	0.05
					MD04	Carissa lanceolata	1	0.03
24/06/2009	MX	1	0–20	MB	MB03	Tephrosia sp.	18	15
	729059E	7759147N	0 _0			Ficus opposita (s)	4	3
						Datura sp.	10	5
						Cynodon dactylon		25
						Atalaya hemiglauca (s)	1	0.1
						Cenchrus ciliaris		0.5
						Ipomea muelleri		0.2
						, Burr	1	0.2
		2	20–40	MB	MB03	Tephrosia sp.	2	0.5
						Ficus opposita (s)	2	1
						Atalaya hemiglauca (s)	1	0.05
						Cynodon dactylon		10
						Cucumis melo	1	0.05
		3	40-60	MB		Cynodon dactylon		3
						Alternanthera nodiflora	1	0.05

734161E 7753618N MB 7ephrosis sp. 100+ 60 2 20-40 MB Cenchus ciliaris 6 1 2 20-40 MB Tephrosis sp. 100+ 5 1 Parkinsonia aculeata 2 0.5 1 Parkinsonia aculeata 100+ 2 1 MB05 Tephrosis sp. 100+ 2 1 MB05 Urochioa sp. 0.05 3 3 40-60 MB Opmodan dactylon 3 0.05 MB06 iporea muelleiri 5 0.5 5 MB07 Pumpkin weed 1 0.01 MB08 Succulent 3 0.05 Alalaya hemiglauca (s) 2 0.5 Ficus apposita (s) 4 0.5 Darkins app. 6 1 0.1 MB08 Urochioa sp. 2 0.5 Ficus apposita (s) 1 0.1 Carcharus app. 1 0.1 MB09 Taphrosis sp. 6 1 <tr< th=""><th>Date 24/06/2009</th><th>Transect MY3</th><th>Quadrat 1</th><th>Distance 0–20</th><th>Comp MB</th><th>Coll.</th><th>Species Cenchrus ciliaris</th><th>abundance</th><th>% cover 4</th></tr<>	Date 24/06/2009	Transect MY3	Quadrat 1	Distance 0–20	Comp MB	Coll.	Species Cenchrus ciliaris	abundance	% cover 4
220-40MBCenchrus ciliaris6MB03Tephrosia sp.10+*15Parkinsonia aculeata20.5MB05Urochioa aculeata10+*2MB05Urochioa sp.0.2Bur10.05340-60MBCynodon decrylon35340-60MBCynodon decrylon35340-60MBCynodon decrylon35340-60MBCynodon decrylon35340-60MBCynodon decrylon35340-60MBCynodon decrylon35340-60MBMB06Joernear nuelleri3460-80MBTephrosia sp.10.01MB05Joernarvia10.11MB07Pumpkin weed10.11Cenchrus ciliaris020.510.1MB05Alagva hemiglauca (s)10.11Cenchrus ciliaris020.510.5Jatura sp.10.111MB10Argernone ochrolouca4022Cynodon decrylon252025Eucalyptis carmaldulensis10.11MB10Canclus cargentea (s)101MB10Canclus cargentea (s)101MB10Canclus cargentea (s)101MB10Canclus argentea (s)101MB10						MB03		100+	
MB03 Tephrosia sp. 100+ 15 Ficus oppositi (s) 5 1 Parkinsonia aculeata 2 0.5 MB02 Argemone ochroleuca 100+ 2 MB03 Urochloa sp. 100+ 2 Burr 1 0.05 Solanum nigricans 2 0.05 MB06 Ipomea muelleri 5 0.5 MB07 Pumpkin weed 1 0.01 MB08 Boorharvia 1 0.01 MB09 Succulent 3 0.05 Atalya hemiglauca (s) 2 0.5 Ficus oppositi (s) 4 0.5 MB05 Urochloa sp. 2 0.5 Ficus oppositi (s) 4 0.5 1 MB05 Urochloa sp. 2 0.5 Ficus oppositi (s) 1 0.5 1 MB05 Urochloa sp. 2 0.5 Ficus oppositi (s) 1 0.5 1 MB05 Urochloa sp. 2 0.5 MB05 Urochlo				20–40	MB				
Ficus opposita (s) 5 1 Parkinsonia aculeata 2 0.5 MB05 Vrocholaca sp. 0.2 Burr 100 2 Burr 0.05 0.5 Solanum ingricans 2 0.05 Solanum ingricans 2 0.05 MB05 Cynodon dactylon 3 MB05 Bornea mualleri 5 0.5 MB05 Burratingricans 2 0.05 MB05 Succulent 3 0.05 Atalya hemiglauca (s) 2 0.15 MB05 Succulent 3 0.05 Atalya hemiglauca (s) 2 0.15 Datura sp. 1 0.11 MB05 Urochoa sp. 0.1 Atalya hemiglauca (s) 1 0.1 Atalaya hemiglauca (s) 1 0.1 MB06						MB03		100+	
Parkinsonia aculeata 2 0.5 MB02 Argemone ochroleuca 100+ 2 MB05 MB05 Argemone ochroleuca 100+ 2 Bur 1 0.05 0.05 0.05 0.05 Solanum nigricans 2 0.05 0.05 0.05 3 40-60 MB Cynodon dictylon 35 MB06 Ipomea muelleri 5 0.5 MB07 Pumpkin weed 1 0.01 MB08 Boerharvia 1 0.01 MB08 Succulent 3 0.05 Atalaya hemiglauca (s) 2 0.5 Fibrosia sp. 1 0.1 MB05 Urochloa sp. 0.1 Atalaya hemiglauca (s) 1 0.5 Eucalyptus camaldulensis 1 0.15 Burne sp. 6 1 1 MB03 Tephrosia sp. 6 1 Atalaya hemiglauca (s) 1 0.1 Atalaya									
MB02 Argemone ochroleuca 100+ 2 MB05 Urochioa sp. 0.2 Burr Sanum nigričans 2 0.05 Sanum nigričans 2 0.05 3 40-60 MB Cynodon dactylon 35 MB06 Ipomea nuelleri 5 0.5 MB07 Pumpkin weed 1 0.01 MB08 Boerharvia 1 0.01 MB08 Boerharvia 1 0.01 MB08 Sopenarvia 1 0.01 MB09 Succulent 3 0.05 Alaya hemiglauca (s) 2 0.15 MB08 Dentra sp. 2 0.16 Cenchrus ciliaris 0.2 0.1 0.1 Cenchrus ciliaris 0.2 0.1 0.1 MB05 Urochloa sp. 0.1 0.1 Cenchrus ciliaris 0.2 0.1 0.1 MB04 Alalaya hemiglauca (s) 1 0.5 Parkinsonia aculeata 1 0.1 0.1 MB10 Candelseura a									0.5
MB05 Urochloa sp. 0.2 Bur 1 0.05 Solanum nigricans 2 0.05 3 40-60 MB Cynodon dactylon 35 3 MB06 ipomea muelleri 5 0.51 MB07 Pumpkin weed 1 0.01 MB08 Boerharvia 1 0.01 MB09 Succulent 3 0.05 Atalaya henrigiauca (s) 2 0.5 Ficus opposita (s) 4 0.1 Datura sp. 1 0.1 MB07 Tephrosia sp. 2 0.5 MB03 Tephrosia sp. 1 0.1 Octritus ciliaris 0.1 0.1 0.05 MB02 Argenone ochroleuca 40 22 Cynodon dactylon 25 5 0.51 MB02 Argenone ochroleuca 10 0.1 MB02 Argenone ochroleuca 10 0.1 MB10 MB10 Caphotic camaldulensis 10 11 (s) 10 11 0						MB02	Argemone ochroleuca	100+	2
3 40-60 MB Solanum nigricans 2 0.05 3 40-60 MB Cynodon dactylon 35 MB07 Pumpkin weed 1 0.01 MB08 Boerharvia 1 0.01 MB09 Succulent 3 0.05 Atalaya hemiglauca (s) 2 0.51 MB03 Succulent 3 0.05 Atalaya hemiglauca (s) 2 0.51 MB03 Tephrosia sp. 1 0.01 Vacchica sp. 1 0.1 0.1 MB04 MB03 Tephrosia sp. 1 0.05 Atalaya hemiglauca (s) 1 0.05 0.22 Atalaya hemiglauca (s) 1 0.05 0.22 Atalaya hemiglauca (s) 1 0.05 0.22 Cynodon dactylon 25 0.5 0.5 0.5 Bucatybus camalculensis 1 0.1 0.1 MB04 Melaiuca argentea (s) 10 1 MB04 White one-sided 3 0.1 MB04 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>MB05</td><td>Urochloa sp.</td><td></td><td>0.2</td></td<>						MB05	Urochloa sp.		0.2
3 40-60 MB Cynodon dactylon 35 MB06 Ipomea muelleri 5 0.5 MB07 Pumpkin weed 1 0.01 MB08 Boerharvia 1 0.01 MB08 Soculent 3 0.05 Atalaya hemiglauca (s) 2 0.15 Atalaya hemiglauca (s) 4 0.5 Ficus opposita (s) 4 0.5 Datura sp. 1 0.1 Cenchrus ciliaris 0.2 0.1 Cenchrus ciliaris 0.2 0.1 Cenchrus ciliaris 0.2 0.1 Cenchrus ciliaris 0.2 0.1 Cynodon dactylon 2 0.05 MB02 Argemone ochroleuca 40 2 Cynodon dactylon 2 0.05 Batalya hemiglauca (s) 1 0.1 Eucalyptus cannaldulensis 1 0.1 (s) argenta argenta (s) 10 1 MB10 Beorharvia 10 1 MB2 Beorharvia 1 0.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Burr</td> <td>1</td> <td>0.05</td>							Burr	1	0.05
MB06 Ipomea muelleri 5 0.5 MB07 Pumpkin weed 1 0.01 MB08 Boorharvia 3 0.05 MB09 Succulent 3 0.05 Atalaya hemiglauca (s) 2 0.15 Ficus opposita (s) 4 0.5 <i>Ficus opposita</i> (s) 4 0.5 Datura sp. 1 0.1 Cenchrus ciliaris 0.2 4 60–80 MB MB03 Tephrosia sp. 6 1 Atalaya hemiglauca (s) 1 0.12 0.2 0.2 0.2 4 60–80 MB MB03 Tephrosia sp. 6 1 Carchrus ciliaris 0.2 0.2 0.2 0.2 0.2 4 60–80 MB MB03 Tephrosia sp. 6 1 Cynodon dactylon 25 0.1 25 0.1 25 6 0.10 1 1 0.1 1 MB106 Candularisis 1 0.1 1 MB106							Solanum nigricans	2	0.05
MB07 Pumpkin weed 1 0.01 MB08 Boerharvia 1 0.01 MB09 Succulent 3 0.05 Atalaya hemiglauca (s) 2 0.15 MB03 Tephrosia sp. 2 0.5 Ficus opposita (s) 4 0.5 Datura sp. 1 0.1 MB05 Urochloa sp. 0.1 Cenchrus ciliaris 0.2 0.5 Atalaya hemiglauca (s) 1 0.05 Atalaya hemiglauca (s) 1 0.05 MB02 Argemone ochroleuca 40 2 Qrinodon dactylon 25 25 25 Eucalyptus camaldulensis 1 0.1 MB04 (s) 10 1 MB04 White one-sided 3 0.1 MB04 Cynodon dactylon			3	40–60	MB		Cynodon dactylon		35
MB08 Boerharvia 1 0.01 MB09 Succulent 3 0.05 Atalaya hemiglauca (s) 2 0.51 Atalaya hemiglauca (s) 2 0.51 MB09 Tephrosia sp. 2 0.51 Ficus opposita (s) 4 0.5 Datura sp. 1 0.11 MB05 Urachoa sp. 0.21 Cenchrus ciliaris 0.22 4 60–80 MB MB03 Tephrosia sp. 6 1 Atalaya hemiglauca (s) 1 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td>MB06</td> <td>lpomea muelleri</td> <td>5</td> <td>0.5</td>						MB06	lpomea muelleri	5	0.5
MB09 Succulent 3 0.05 Atalaya hemiglauca (s) 2 0.15 MB03 Tephrosia sp. 2 0.5 Ficus opposita (s) 4 0.5 Datura sp. 1 0.1 Cenchrus cillaris 0.2 4 60–80 MB MB03 Tephrosia sp. 0.1 Cenchrus cillaris 0.2 0.1 0.1 MB04 Atalaya hemiglauca (s) 1 0.05 MB05 Argemone ochroleuca (s) 1 0.05 MB05 Argemone ochroleuca (s) 1 0.1 MB05 Argemone ochroleuca (s) 1 0.1 MB06 Argemone ochroleuca (s) 1 0.1 MB06 Sopradot dactylon 25 25 Eucalyptus camaldulensis 1 0.1 MB06 (s) 10 1 MB06 Sopradot dactylon 25 2 MB06 MB04 White one-sided (s) 10 1 MB06 Cardles 21 0.5 2 Aria						MB07	Pumpkin weed	1	0.01
Atalaya hemiglauca (s) 2 0.15 MB03 Tephrosa sp. 2 0.5 Ficus opposita (s) 4 0.5 Datura sp. 1 0.1 MB05 Urochloa sp. 0.1 Cenchrus ciliarias 0.2 4 60–80 MB MB03 Tephrosia sp. 6 1 5 80–100 MB MB04 Argemone ochroleuca 40 2 5 80–100 MB (s) 10 1 1 6 100 1 MElaleuca argentea (s) 10 1 1 MB10 Candles 21 0.5 1 0.1 1 MB10 Candlesp. 1 0.5						MB08	Boerharvia	1	0.01
MB03 Tephrosia sp. 2 0.5 Ficus opposita (s) 4 0.5 Datura sp. 1 0.1 MB05 Urachiaa sp. 0.1 Cenchrus ciliaris 0.2 4 60–80 MB MB03 Tephrosia sp. 6 1 4 60–80 MB MB02 Argemone ochroleuca 40 2 2 Ophoton dactylon 25 Eucalyptus camaldulensis 3 0.5 5 80–100 MB (s) 10 1 1 5 80–100 MB MB04 White one-sided 3 0.1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>MB09</td><td>Succulent</td><td>3</td><td>0.05</td></td<>						MB09	Succulent	3	0.05
Ficus opposita (s) 4 0.5 Datura sp. 1 0.1 Detura sp. 0.1 Urochloa sp. 0.22 Cenchrus ciliaris 0.2 4 60–80 MB MB03 Tephrosia sp. 6 1 4 60–80 MB MB03 Tephrosia sp. 6 1 4 60–80 MB MB03 Tephrosia sp. 6 1 0.05 4 60–80 MB MB03 Tephrosia sp. 6 1 0.05 4 60–80 MB MB03 Tephrosia sp. 6 1 0.05 4 60–80 MB MB03 Tephrosia sp. 6 1 0.05 5 80–100 MB (s) 10 1 1 1 5 80–100 MB (s) 10 1 1 1 6 100–120 MB MB04 White one-sided 3 0.1 1 0.5 7 100–120 MB MB03 Tephrosia							Atalaya hemiglauca (s)	2	0.15
Datura sp. 1 0.1 MB05 Urochloa sp. 0.1 Cenchrus ciliaris 0.2 4 60–80 MB MB03 Tephrosia sp. 6 1 0.05 4 60–80 MB MB03 Tephrosia sp. 6 1 0.05 4 60–80 MB MB03 Tephrosia sp. 6 1 0.05 4 60–80 MB MB03 Tephrosia sp. 6 1 0.05 4 60–80 MB MB03 Tephrosia sp. 6 1 0.05 4 60–80 MB MB02 Argemone ochroleuca 40 2 Cynodon dactylon 25 Eucalyptus camaldulensis 1 0.11 5 80–100 MB (s) 10 1 MB04 White one-sided 3 0.1 MB06 Boerharvia 1 0.1 MB06 Boerharvia 1 0.5						MB03	<i>Tephrosia</i> sp.	2	0.5
MB05 Urochloa sp. Cenchrus ciliaris 0.1 4 60–80 MB MB03 Tephrosia sp. Atalaya hemiglauca (s) 1 0.2 4 60–80 MB MB03 Tephrosia sp. Atalaya hemiglauca (s) 1 0.2 4 60–80 MB MB02 Argemone ochroleuca 40 2 2 Cyrodon dactylon Eucalyptus camaldulensis 25 25 5 80–100 MB Parkinsonia aculeata 1 0.1 5 80–100 MB (s) 10 1 6 100–120 MB MB04 White one-sided 3 0.1 MB04 White one-sided 3 0.1 0.1 0.1 MB04 White one-sided 3 0.1 0.1 MB06 Boerharvia 1 0.1 0.1 MB06 Boerharvia 1 0.5 0.1 MB06 Boerharvia 1 0.5 0.1 MB10 Candles 21 0.5 0.1 MB06 Boerharvia 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>Ficus opposita (s)</td><td>4</td><td>0.5</td></td<>							Ficus opposita (s)	4	0.5
4 60–80 MB MB03 Tephrosia sp. 6 1 4 60–80 MB MB03 Tephrosia sp. 6 1 Atalaya hemiglauca (s) 1 0.05 MB02 Argemone ochroleuca 40 2 Cynodon dactylon 25 Eucalyptus camaldulensis 1 0.1 (s) 3 0.5 Parkinsonia aculeata 10 1 Melaleuca argentea (s) 10 1 5 80–100 MB MB04 White one-sided 3 0.1 MB04 White one-sided 3 0.1 1 0.1 MB06 Boerharvia 1 0.1 1 0.1 MB06 Boerharvia 1 0.1 1 0.1 MB06 Boerharvia 1 0.1 0.5 0.2 0.5 G 100–120 MB MB03 Tephrosia sp. 1 0.5 G 100–120 MB MB03 Tephrosia sp. 1 0.5 Melaleuca argen							Datura sp.	1	0.1
4 60–80 MB MB03 Tephrosia sp. 6 1 Atalaya hemiglauca (s) 1 0.05 MB02 Argemone ochroleuca 40 2 Cynodon dactylon 25 Eucalyptus camaldulensis 3 0.5 (s) 3 0.5 Parkinsonia aculeata 1 0.1 Melaleuca argentea (s) 10 1 5 80–100 MB (s) 10 1 MB04 White one-sided 3 0.1 MB06 Boerharvia 1 0.5 Cynodon dactylon 10 0.5 MB07 Candles 21 0.5 Cynodon dactylon 0.5 0.5 MB08 Tephrosia sp. 1 0.5 Melaleuca argentea (s) 2 0.1 Urochloa sp.						MB05	Urochloa sp.		
Atalaya hemiglauca (s) 1 0.05 MB02 Argemone ochroleuca 40 2 Cynodon dactylon 25 Eucalyptus camaldulensis 3 0.5 Parkinsonia aculeata 1 0.1 MB02 Securalyptus camaldulensis 10 1 5 80–100 MB (s) 10 1 5 80–100 MB (s) 10 1 Melaleuca argentea (s) 10 1 1 1 5 80–100 MB (s) 10 1 MB04 White one-sided 3 0.1 1 MB06 Boerharvia 1 0.1 1 MB10 Candles 21 0.5 0.5 Cynodon dactylon 10 0.5 0.2 0.2 Aira cariophylla 0.5 0.2 0.2 0.2 Aira cariophylla 0.5 0.2 0.1 0.5 6 100–120 MB MB03 Tephrosia sp. 1 0.05 7 160–18							Cenchrus ciliaris		0.2
MB02 Argemone ochroleuca 40 2 Cynodon dactylon 25 Eucalyptus camaldulensis 3 0.5 Parkinsonia aculeata 1 10 1 MB02 Argemone ochroleuca 10 1 Melaleuca argentea (s) 10 1 1 S 80–100 MB (s) 10 1 MB04 White one-sided 3 0.1 16 2 MB06 Boerharvia 1 0.1 10 1 MB06 Boerharvia 1 0.1 10 1 MB10 Candles 21 0.5 0.2 Aira cariophylla 0.5 0.2 0.2 0.5 6 100–120 MB MB03 Tephrosia sp. 1 0.5 Cynodon dactylon 5 0.1 0.5 0.1 0.5 0.1 Cynodon dactylon 5 0.2 0.1 0.5 0.1 0.5 Generation 1 0.5 0.1 0.05 0.1 0.05			4	60–80	MB	MB03		6	
5 80–100 MB (s) 3 0.5 5 80–100 MB (s) 10 1 6 100 16 20 16 21 7 100–120 MB MB03 Tephrosia sp. 1 0.5 6 100–120 MB MB03 Tephrosia sp. 1 0.5 6 100–120 MB MB03 Tephrosia sp. 1 0.5 6 100–120 MB MB03 Tephrosia sp. 1 0.5 7 160–180 MB MB03 Tephrosia sp. 1 0.05 7 160–180 MB MB03 Tephrosia sp. 3 0.1 0.2yperus vaginatus 1 0.055 0.05 0.05							• • •		0.05
Eucalyptus camaldulensis 3 0.5 Parkinsonia aculeata 1 0.1 Parkinsonia aculeata 1 0.1 Melaleuca argentea (s) 10 1 5 80–100 MB (s) 10 1 5 80–100 MB (s) 10 1 6 100 MB MB04 White one-sided 3 0.1 MB04 White one-sided 3 0.1 0.1 0.1 MB06 Boerharvia 1 0.1 0.1 MB10 Candles 21 0.5 0.1 Cynodon dactylon 10 0.5 0.1 Urochloa sp. 0.2 Aira cariophylla 0.5 6 100–120 MB MB03 Tephrosia sp. 1 0.5 Melaleuca argentea (s) 2 0.1 0.1 0.5 0.1 Cynodon dactylon 5 Cucumis melo 1 0.05 0.1 Cynodon dactylon 5 Cucumis melo 1 0.05 0.1 Cype						MB02	-	40	
Parkinsonia aculeata 1 0.1 Melaleuca argentea (s) 10 1 5 80–100 MB (s) 10 1 Melaleuca argentea (s) 10 1 1 1 5 80–100 MB (s) 10 1 5 80–100 MB (s) 10 1 6 MB04 White one-sided 3 0.1 MB06 Boerharvia 1 0.1 MB06 Boerharvia 1 0.1 MB10 Candles 21 0.5 Cynodon dactylon 10 0.5 0.2 Aira cariophylla 0.5 0.2 0.5 6 100–120 MB MB03 Tephrosia sp. 1 0.5 Melaleuca argentea (s) 2 0.1 0.5 0.05 0.05 0.05 0.05 6 100–120 MB MB03 Tephrosia sp. 1 0.05 Cynodon dactylon 5 Cucumis melo 1 0.05 0.05 7							Eucalyptus camaldulensis	2	
580-100MBMetaleuca argentea (s) Eucalyptus camaldulensis (s)101580-100MBMB0Metaleuca argentea (s)1016MB04White one-sided30.117100-120MBMB03Tephrosia sp. Cynodon dactylon MB1010.57160-180MBMB03Tephrosia sp. Cyneus vaginatus10.057160-180MBMB03Tephrosia sp. Cyneus vaginatus10.057160-180MBMB03Tephrosia sp. Cyneus vaginatus30.17160-180MBMB03Tephrosia sp. Cyneus vaginatus30.17160-180MBMB03Tephrosia sp. Cyneus vaginatus30.17160-180MBMB03Tephrosia sp. Cyneus vaginatus30.17160-180MBMB03Tephrosia sp. Cyneus vaginatus30.1									
580–100MBEucalyptus camaldulensis (s)101 Melaleuca argentea (s)162MB04White one-sided30.1MB06Boerharvia10.1MB10Candles210.5Cynodon dactylon10 Urochloa sp.0.2Aira cariophylla0.56100–120MBMB03Tephrosia sp. Cynodon dactylon10.56100–120MBMB03Tephrosia sp. Cynodon dactylon10.56100–120MBMB03Tephrosia sp. Cyperus vaginatus10.057160–180MBMB03Tephrosia sp. Cyperus vaginatus30.1 Cyperus vaginatus0.5									
Melaleuca argentea (s) 16 2 MB04 White one-sided 3 0.1 MB06 Boerharvia 1 0.1 MB10 Candles 21 0.5 Cynodon dactylon 10 10 Urochloa sp. 0.2 10 Aira cariophylla 0.5 6 100–120 MB MB03 Tephrosia sp. 1 0.5 Melaleuca argentea (s) 2 0.1 0.5 0.5 0.5 6 100–120 MB MB03 Tephrosia sp. 1 0.5 Melaleuca argentea (s) 2 0.1 0.5 0.1 0.5 0.1 Cynodon dactylon 5 Cucumis melo 1 0.05 0.1 Cyperus vaginatus 1 0.05 0.1 0.05 0.1 7 160–180 MB MB03 Tephrosia sp. 3 0.1 Cyperus vaginatus 1 0.05 0.05 0.1 0.05			5	80-100	MB		Eucalyptus camaldulensis		
MB04 White one-sided 3 0.1 MB06 Boerharvia 1 0.1 MB10 Candles 21 0.5 Cynodon dactylon 10 10 Urochloa sp. 0.2 10 Aira cariophylla 0.5 6 100–120 MB MB03 Tephrosia sp. 1 0.5 Melaleuca argentea (s) 2 0.1 0.5 0.1 0.5 7 160–180 MB MB03 Tephrosia sp. 1 0.05 7 160–180 MB MB03 Tephrosia sp. 3 0.1 Cyperus vaginatus 1 0.05 0.1 0.1 7 160–180 MB MB03 Tephrosia sp. 3 0.1 Cyperus vaginatus 1 0.05 0.1 0.05 0.1			5	00-100					
MB06 Boerharvia 1 0.1 MB10 Candles 21 0.5 Cynodon dactylon 10 Urochloa sp. 0.2 Aira cariophylla 0.5 6 100–120 MB MB03 Tephrosia sp. 1 0.5 Melaleuca argentea (s) 2 0.1 Cynodon dactylon 5 Cucumis melo 1 0.05 7 160–180 MB MB03 Tephrosia sp. 3 0.1 Cyperus vaginatus 1 0.05 1 0.05 7 160–180 MB MB03 Tephrosia sp. 3 0.1 Cyperus vaginatus 1 0.05 1 0.05 7 160–180 MB MB03 Tephrosia sp. 3 0.1 Cyperus vaginatus 1 0.05 1 0.05						MR04			
MB10 Candles 21 0.5 Cynodon dactylon 10 Urochloa sp. 0.2 Aira cariophylla 0.5 6 100–120 MB MB03 Tephrosia sp. 1 0.5 Melaleuca argentea (s) 2 0.1 0.5 0.5 0.5 7 160–180 MB MB03 Tephrosia sp. 1 0.05 7 160–180 MB MB03 Tephrosia sp. 3 0.1 Cyperus vaginatus 1 0.05 0.05 0.1 0.05 7 160–180 MB MB03 Tephrosia sp. 3 0.1 Cyperus vaginatus 1 0.05 0.05 0.1 0.05 0.1									
6 100–120 MB MB03 Tephrosia sp. 1 0.5 6 100–120 MB MB03 Tephrosia sp. 2 0.1 7 160–180 MB MB03 Tephrosia sp. 3 0.1								-	
Urochloa sp. 0.2 Aira cariophylla 0.5 6 100–120 MB MB03 Tephrosia sp. 1 0.5 6 100–120 MB MB03 Tephrosia sp. 1 0.5 Melaleuca argentea (s) 2 0.1 5 0.00 0.00 0.00 Cynodon dactylon 5 0.00 1 0.05 0.00 0.00 0.00 0.05 7 160–180 MB MB03 Tephrosia sp. 3 0.1 0.05 7 160–180 MB MB03 Tephrosia sp. 3 0.1 Cyperus vaginatus 1 0.05 0.05 0.05 0.05						IND TO			
Aira cariophylla 0.5 6 100–120 MB MB03 Tephrosia sp. 1 0.5 Melaleuca argentea (s) 2 0.1 0.1 0.1 0.5 Cynodon dactylon 5 0.05 0.05 0.05 7 160–180 MB MB03 Tephrosia sp. 3 0.1 Cyperus vaginatus 1 0.055 0.05 0.1 0.05 7 160–180 MB MB03 Tephrosia sp. 3 0.1 Cyperus vaginatus 1 0.055 0.05 0.05 0.05									
6 100–120 MB MB03 Tephrosia sp. 1 0.5 Melaleuca argentea (s) 2 0.1 Cynodon dactylon 5 Cucumis melo 1 0.05 7 160–180 MB MB03 Tephrosia sp. 3 0.1 Cyperus vaginatus 1 0.05 0.05 0.1 0.05 7 160–180 MB MB03 Tephrosia sp. 3 0.1 Cyperus vaginatus 1 0.05 0.05 0.05 0.05 0.05							•		
Melaleuca argentea (s) 2 0.1 Cynodon dactylon 5 Cucumis melo 1 0.05 Cyperus vaginatus 1 0.05 7 160–180 MB MB03 Tephrosia sp. 3 0.1 Cyperus vaginatus 1 0.05 1 0.05 7 160–180 MB MB03 Tephrosia sp. 3 0.1			6	100–120	MB	MB03		1	
Cynodon dactylon 5 Cucumis melo 1 0.05 Cyperus vaginatus 1 0.05 7 160–180 MB MB03 Tephrosia sp. 3 0.1 Cyperus vaginatus 1 0.05 1 0.05 1 0.05			-						
Cucumis melo 1 0.05 Cyperus vaginatus 1 0.05 7 160–180 MB 03 Tephrosia sp. 3 0.1 Cyperus vaginatus 1 0.05 1 0.05									
Cyperus vaginatus 1 0.05 7 160–180 MB MB03 Tephrosia sp. 3 0.1 Cyperus vaginatus 1 0.05								1	
7 160–180 MB MB03 Tephrosia sp. 3 0.1 Cyperus vaginatus 1 0.05									
Cyperus vaginatus 1 0.05			7	160–180	MB	MB03			
Cynodon dactyion 2							Cynodon dactylon		2

Appendix C Vegetation transect overstorey species health and diameter 2009

Homestead (MT); Co-ords: 729579E, 7766439N; Date: 23/06/09

Quad	Species	Tag	Distance o	n transect	DBH		Canopy	cond
			x (m)	y (m)	2004	2009	2004	2009
0-20m	Ficus opposita	1	10.4	13.2	12.7	15, 12	19	19
	Atalaya hemiglauca	2	12.2	8.45	25.8	24.8	19	19
		3	14.5	3	12.7	7	23	21
		NT	na	na	na	8.5, 15		19
	Eucalyptus					13.5, 84.4, 11.4, 15.5,		
	camaldulensis	4	15.4	8	86.0	26.8	17	17
		5	17.3	1.7	10.2	7.5, 24	13	21
		6	17.1	4.5	8.0	8	13	19
		7	16.8	11.3	9.2	10.5	13	17
		8	17	16.9	5.3	11.5	21	21
	Eucalyptus							
20-40m	camaldulensis	9	41.1	3.7	34.4	32.5, 55	13	15
		12	33.7	8	1.6	3	17	15
		13	33.7	14.4	1.3	8.5, 1.5	17	21
		NT	na	na	na	1.2, <1		19
	Atalaya hemiglauca	11	28	8.4	3.2	4, 4.7, 4	17	23
	Ficus opposita	10	28	11.2	34.7	22	17	21
40-60m	n/a <i>Eucalyptus</i>							
60-80m	camaldulensis	19	64	7.2	9.6	10.6 50.5, 59.2,	13	19
		26	68.1	2.6	60.5	35.7	17	19
						48.5, 13,		
		23	64.7	14.9	48.7	25.5	11	19
		22	71.8	14	27.1	4.5, 30.3	15	15
		18	72	16.6	5.4	5.8	9	15
		20	72.3	17.2	7	8	11	15
		15	75.6	12.1	5.4	16.4	11	11
		25	75.6	10.9	4.8	?	7	?
		17	76.5	7.6	9.5	11.3	11	15
		14	76.5	17.5	7	?	11	?
	Melaleuca argentea	21	72.9	11	22.3	22.3 14, 5.8, 10.4,	15	19
		24	75.9	7.6	11.1	6.2, 2, 3.3, 3.3	11	19
	Ficus opposita	10	28	11.2	34.7	22	17	21

Quad	Species	Tag	Distance or		DBH		Canopy	
			x (m)	y (m)	2004	2009	2004	2009
100-120m	Eucalyptus					22.5		19
new plot	camaldulensis					32.5		21
						31.8		21
						26.8		19
						21.2		19
						28.4		21
						8.5		17
						34.2		19
						22		17
140-160m	Eucalyptus	27	140.3	8.8	24.8	27.0	11	19
	camaldulensis	33	149.9	3.4	12.1	16.5	11	19
		34	149	8.4	8.9	7.0	7	13
		32	146.7	16	5.7	na	11	na
		35	151.8	7.5	5.7	na		na
		36	152	8.1	8.0	3.7, <2	11	19
		37	152	9.9	14.0	15.6, 6.3	15	21
		38	154.7	10.1	15.0	16.7, 2.3	17	17
		39	154.7	9.4	14.0	17.0	17	15
		40	158.7	6.9	6.4	5.9, <2	7	7
		41	154.7	3.5	4.8	5.0	7	11
		42	158.8	4.3	5.1	5.0	7	15
		43	158.8	5.9	14.0	15.3	15	17
		44	158.8	15.9	17.5	20.4	15	19
		NT	na	na	na	<2		11
	Melaleuca argentea	28	140.3	8.9	63.7	58.2, 31	13	15
	·	29	143.1	13	30.3	26.5	15	19
		30	143.1	11.5	16.6	15.0	15	21
		31	143.3	6.1	20.7	21.0	13	19
		NT	na	na	na	4.5		13
220-240m	Eucalyptus	400	220	17.3	14.6	10.0	15	21
220 2 10111	camaldulensis	401	226.5	5	14.3	15.5	13	21
	bamaladionolo	401	220.0	5	14.0		10	21
		402	229.9	1	15.3	23.1, <2, <2	13	19
		403	236.2	1.6	13.7	12.5	13	19
		404	232.2	7.4	29.9	31, 9.5	15	10
		405	139.5	14.5	3.2	3.5	13	23
		NT	na	na	na	<2		17
		NT	na	na	na	7.1		21
		NT	na	na	na	12, 10.6		19
250-270m	Eucalyptus	406	252.8	6.3	1.6	<2	13	15
	camaldulensis	407	252.8	13.9	1.6	<2	13	19
		408	259	9.3	4.5	7.3 <2, <2,	13	21
		409	260	1.5	3.5	~2, ~2, <2,	13	17
		410	263.6	8.2	3.2	3.0	13	18
		411	260.7	7.5	6.4	8.2, <2	13	21
						4, 19.7,		
		412	259	14	15.0	6, 2.2, 3, 8, 9	13	23
		413	262.6	14	31.5	22.2	15	23
		414	268.8	3.1	2.9	<2	13	15
		NT	200.0 na	na	na	13.8	10	23
		1.1.1	na	na	na	10.0		20

Quad	Species	Tag	Distance o x (m)	n transect y (m)	DBH 2004	2009	Canopy 2004	cond 2009
	Eucalyptus		. ,	,				
20-40m	camaldulensis	45	11	0.5	45.9	42.2	15	21
		49	10.2	18.9	101.9	96	15	19
	Melaleuca argentea	46	11.9	3.7	75.5	23, 74.4, 43.2 52.1, 50.5,	15	21
		47	11.8	10.7	50.6	49.5	15	19
		48	10.2	18	45.2	60	15	19
60-80m	Melaleuca argentea	50	52		56.4	49.9	15	19
	5	51	53		20.4	20.5	15	17
		52	54		12.7	12.5	15	17
		53	55		12.7	15	15	7
		54	56		15.3	16	15	19
		55	57		16.2	17	15	15
		56	58		14.6	13	15	17
		57	59		12.1	11.3 18.5, 16.5,	15	19
		89	59		22.3	37.5	15	17
		90	55		25.8	31	15	15
		NT	na		na	5, 3.3	na	17
		NT	na		na	8.2, <2, <2, <2	na	19
		NT	na		na	32.5	na	19
		60	61		11.5	11.9	15	17
		62	62		10.2	10.5	15	19
		63	66		14.3	14.8	15	15
		64	67		22.3	21	15	17
		65	68		18.2	18 19.9,	15	19
		66	68		20.1	12.3	15	19
		68	71		21.3	20.7	15	17
		69	72		28.7	27	15	13
		70	73		28.7	32.2	15	17
		71	74		30.3	26.6 12.2,	15	17
		85	75		29.3	12.2	15	15
		84	78		33.4	31	15	17
		83	79		27.7	24.8	15	17
		82	80		23.9	19.8	15	19
		94	74		13.4	14.5	15	17
		93	65		15.3	22.2	15	17
		92	68		36.0	24.8	15	17
		91	70		7.6	13	15	19
		88	79		13.4	15	15	17
		101	77		25.5	32	15	17
		103	79		14.3	17	15	11
		104	64		17.5	19.2 17.3	15	19 7
80-100	Melaleuca argentea	59	63		19.4	16	15	19
-	0	58	64		10.2	9	15	17
		61	65		13.1	13.5	15	21
		67	70		46.2	49.3	15	21
		72	76		26.4	15, 10.2	15	17
		81	81		9.2	10	15	19

Bulgarene (MV); Co-ords: 730154E, 7763139N; Date: 23/06/09

Quad	Species	Tag	ag Distance on transect		ance on transect DBH			cond
			x (m)	y (m)	2004	2009	2004	2009
80-100	Melaleuca argentea	80	82		23.9	21.2	15	13
		79	83		14.3	16.5	15	15
		78	84		10.8	10.5	15	19
		77	85		17.5	17	15	21
		76	86		15.9	19	15	21
						19.5,		
		75	87		20.7	8.4, 36.8	15	15
		74	88		13.1	9.5	15	17
						<2, <2,		
		73	89		16.9	<2, <2	15	9
		100	90		6.4	7.2	15	19
						13, 8.5, 5, 8.2,		
		99	91		14.3	7.8	15	19
		98	92		11.1	10.2, 3.5	15	13
		97	85		6.4	5	15	11
		96	86		20.7	13, 19	15	19
		95	84		14.3	14.8	15	17
		86	84		11.1	12.2	15	17
		87	85		8.9	8	15	19
						39.6,		
		NT	na	na	na	21.6	na	19
		NT	na	na	na	21	na	17
		NT	na	na	na	27.4	na	17

J96 (MW), Co-ords: 729070E, 7761336N, Date: 24/06/09

Quad	Species	Tag	Distance o x (m)	n transect y (m)	DBH 2004	2009	Canopy co 2004	ond 2009
0-10m	n/a							
10-20m	n/a							
20-30m	n/a <i>Eucalyptus</i>							
30-40m	camaldulensis	199	38	11.8	33.4	33.6	13	15
						5.3, 7.6, 3.8, 9.5, 7.9, 3.1,		
	Eremophila longifolia Eucalyptus	200	33	16.1	42.9	2.6, 38 51.7,	15	19
40-50m	camaldulensis	196	43	13.7	55.2	13.5	13	15
		193	44	15.5	40.4	38.5	13	17
		192	44	17.8	25.5	23, 24	11	15
		194	44.6	19.5	36.6	30.2 148,	11	15
	Melaleuca argentea	198	46.5	1	118.4	79.8	13	14
		197	15	49	124.1	128 15.2, 12.4,	15	13
		191	49.5	14	44.9	16.1, 8	15	13
50-60m	Melaleuca argentea	NT	na	na	na	78 42.8, 26.3,	na	19
		NT	na	na	na	23.6, 16	na	19

Quad	Species	Tag	Distance or	n transect	DBH		Canopy c	ond
		-	x (m)	y (m)	2004	2009	2004	2009
0-20m								
20-40m	Eucalyptus	240	26.9	1.1	49.7		11	
	camaldulensis	241	26.9	5.2	66.6		15	
		242	26.9	16.8	65.3		11	
		243	29.2	19.5	9.9		13	
		244	33.2	16.5	22.3		11	
	Atalaya hemiglauca	245	30.3	1.2	20.4		15	
40-60m	Eucalyptus	246	47.8	1.1	62.1	60, 54.6	15	15
	camaldulensis	247	46.2	8.4	42.7		11	
		248	45.6	11.2	77.1		11	
		250	46	17	56.4		13	
	Melaleuca argentea	249	44	17.2	14.0	13	13	17
	J	251	50.3	9	49.4	45.5	13	15
						50.6,		
		252	50	5.7	52.2	13.5	13	15
		253 254	50.7 54.4	2.1 1.8	29.9 36.6	31 29.8	11 13	19 19
		204	04.4		30.0	29.8 12.9, 20,	15	19
		255	50.7	3.6	38.5	23	11	19
		256	57	2.6	19.1	19.2	11	21
		257	57	2.6	18.2	18 15.5, 13,	13	17
		258	59.2	14.6	31.8	10	13	19
		257B	57	11.5	18.5	18.2	13	17
60-80m	Malalauna argantaa							
00-0011	Melaleuca argentea	259	63.3	17.4	18.5	20.1	13	17
		260	63.3	16	25.5	11.5, 14	13	19
		261	62	15.4	7.0	7.9	13	15
		262	61.5	3.8	20.7	21	13	21
		263	60.2	12.6	29.0	15.2, 9.1	13	17
		264	61.7	8	21.3	20.5	11	19
		265	60.2	5.8	17.5		13	
		266	60.2	5.8	24.5		11	
		267	60.2	3.8	17.5	28	11	19
		268	60.9	2	30.3	26.6, 22.7	13	17
		269	63.3	0	23.2		13	
		NT				47		7
		NT				66.1		17
		NT				77.2		17
		NT				81		9
		NT				42.5		11
		NT				11.3		15
		NT				9		15
		NT				8		15
		NT				14.5		17
		NT				13.8		15
		NT				12		13

MX; Co-ords: 729059E, 7759147N; Date: 24/06/09

Coolenar (MY3); Co-ord: 734161E, 7753618N; Date: 24/06/08

Quad	Species	Тад	Distance or		DBH		canopy o	
			x (m)	y (m)	2004	2009	2004	2009
0-20m	Eucalyptus victrix	110	1	11	30.9	24.3	15	17
20-40m	Melaleuca argentea	109	31	9.8	52.2	52.4	10	19
		115	30.1	9.6	43.3	56	10	17
	. .	119	30.8	13.8	43.6	41.5	13	11
	<i>Acacia</i> sp.	116	30.2	11.7	7.3	9.2, 9	11	19
	Lysiphyllum	121	37.7	20.1	6.4	5.3	13	8
	cunninghamii	117	31	10.8	8.3	9.5, 7.6	11	15
	Atalaya hemiglauca	118	29.8	14.8	12.7	15.2	17	17
	Ficus opposita Eucalyptus	105	37.2	11.7	28.7	18.8, 7.8	11	21
	camaldulensis	120	33.3	20.1	65.3	64	11	19
		122	37.7	1.6	36.3	dead	13	0
40-60m	Melaleuca argentea	123	45.6	3.6	20.7	18.4	11	14
		124	48	1.8	46.2	41.8 <2, ,2, <2,	11	16
		125	45.6	1.2	6.4	3.6, 2.9, 3.4	13	21
		134	45.6	8.6	28.7	30.9	13	16
		133	48	5.8	9.6	00.0	10	10
		132	49	3.4	50.3	18.4	13	12
		131	49.4	1.6	19.7	17.9, 5.7	10	15
		126	49	6.6	43.0	41.6	11	10
		130	49.4	7.9	25.5	20.6	13	21
		129	49.4	10.9	24.8	dead	10	dead
		123	49.4	11.8	44.6	42.5	13	21
		120		20.2	100.3	97	11	14
				20.2	100.5	2, 2.8, <2,		
		NT	na	na	na	<2	na	19
		NT	53	2	na	14, <2	na	18
		NT	na	na	na	20, 36	na	14
	Eucalyptus	140	54	6.4	59.6	62	17	19
	camaldulensis	139	54	4.1	21.3	20	11	12
		138	54.2	5	15.9	16.8	13	17
		135	56.1	0.5	35.0	36.5 55.5, 24.4, 10,	11	15
60-80m	Melaleuca argentea	500	61.9	4.4	49.0	15	7	17
	· · · · · · · · · · · · · · · · · · ·	501	61.9	6.4	53.2	na	13	na
		502	63.5	5.3	58.9	na 33.2, 20,	13	na
		503	62	11.1	67.2	62	13	16
		504	61.9	18.4	21.7	13, 21.2	11	21
		505	67.1	16.7	11.1	na	11	na
		508	68	13.4	18.5	15.8	11	15
		509	69.7	13.6	15.3	14.5	13	20
		510	69	10	19.1	20.5	13	19
		511	69.7	9.8	23.9	25.4	11	19
		514	72.8	5.9	4.8	na	11	na
		515	73	7.3	3.5	<2, <2, <2	11	20
		516	71.6	9.3	18.2	na	11	na
		517	71.2	13.8	14.3	na	9	na
		518	72.4	13.9	17.2	na	9	na
		519	71.8	15.3	22.3	na	0	na
		520	71.8	16.6	20.4	na	9	na
		521	73	15.8	11.1	11	9	16
		522	75.5	18	19.1	14.5, 19.5	9	17
		523	75.5	14.9	14.0	na	11	na

Quad	Species	Tag	Distance o x (m)	n transect y (m)	DBH 2004	2009	canopy o 2004	ond 2009
60-80m	Melaleuca argentea	524	77	18.2	28.7	9.1, 8.5, 5.3, <2	13	17
		525	78	17.4	22.0	32.9	13	17
		526	75.5	12.5	17.2	10.5	11	21
		526A	73	14.5	8.3	na	11	na
		529	72.9	5.2	8.0	8.3	13	17
		528	73	6	5.7	8.4	13	21
		530A	75.5	3.6	7.3	13.2, 5.5	13	19
		532	73	1	19.4	na	11	na
		NT	na	na	na	2.2	na	19
		NT	na	na	na	3.5 2.5, 3, 3.8, 2.9, 2.4, <2, <2, <2,	na	16
						<2, <2, <2		18
	Eucalyptus	506	68	16.8	27.7	na	13	na
	camaldulensis	507	68.6	16.4	32.2	na	13	na
		512	64.5	3.7	5.4	10	11	19
		513	69.7	8	3.5	7.5	13	21
		NT	na	na	na	5	na	19
		NT	na	na	na	6.8	na	21
	Sesbania formosa	530	75.5	3.2	9.55	na	11	na
80- 100m	Melaleuca argentea		80.3	8.7	na	<2, 4.2, 4.5, 3.3	na	21
			84	8.5	na	2.1, 3.9	na	11
	Eucalyptus		82	8.2	na	13.4	na	21
	camaldulensis		81.8	9.3	na	8.1	na	17
100-			100	9	na	12.2 3.1, 2.5, <2, <2,	na	21
120m	Melaleuca argentea		101	2	na	<2, <2	na	13
~166	Melaleuca argentea	137	166		46.2	38.5, 58.3, 42.5 21.4, 12.3, 13.8, 10.5	15	19
		136	166		32.5	19.5, 13, 52 31.6, 31, 17.5, 20.9, 15.5, 15.3, 11, 26.4, ,	13	19
		1 4 4	166		62.7	28.5,	10	16
		141	166		63.7 25.0	12.9.9	13	16
		145	166		35.0	na	13	na

Muccangarra (MZ); Co-ords: 757075E, 7760395N; Date: 24/06/09

Quad	Species	Tag	Distance of x (m)	n transect y (m)	DBH 2004	2009	Canopy 2004	cond 2009
0-20m	Eucalyptus	188	4.7	12.3	35.0	14.2	13	17
	camaldulensis	186	5.9	7	4.8	na	13	na
						17, 34, 11,		
		189	9.3	17.7	13.4	6.5	13	17
		NT	na	na	na	5	na	19
	Atalaya hemiglauca	NT	na	na	na	34.0	na	17
		NT	na	na	na	11	na	17
		NT	na	na	na	6.5	na	17
20-40m	Eucalyptus	195	35	5.8	6.4	24	17	19
	camaldulensis	185	36	7.8	8.6	na	17	na
		187	38.4	7.3	4.8	15.8	19	19
		190	38.4	7.3	4.8	19.7	19	19
		201	40	16.4	3.8	18.6	19	21
40-60m	Eucalyptus	202	43.3	1.2	21.3	na	13	na
	camaldulensis	203	43.3	1.9	9.6	na	9	na
		204	46.9	1.5	26.4	na	15	na
		205	40	1.8	29.9	na	15	na
		206	45.3	1.4	5.7	na	9	na
		207	51.7	5.1	41.1	na	15	na
		208	51.7	6	16.9	na	15	na
		209	51.7	6.6	39.5	na	13	na
		211	50.5	8	7.3	na	11	na
		217	50.5	13.5	23.6	na	15	na
		218	50	9.7	6.4	na	13	na
		NT	43	12.5	na	3.2	na	17
		NT	40	6	na	9.3	na	17
		NT	44	16	na	12	na	17
		NT	40	17.1	na	6.7	na	17
		NT	52	19	na	10.9	na	19
		NT	51	10	na	27	na	19
		NT	46	na	na	5.7	na	17
		NT	53	na	na	12.3	na	13
	Melaleuca argentea	210	51.7	7.1	13.4	18.8	13	17
	·	212	53	7.9	9.9	17.5	13	17
		213	53.5	9.3	19.1	na	13	na
		214	53	11.5	21.7	na	13	na
		215	50.5	12.1	4.8	7.7	15	17
		216	53	13.5	20.4	na	13	na
		219	53	13.5	15.9	8.2	15	11
		220	53	13.6	3.2	5.2	13	17
		221	53	14.3	27.1	na	13	na
		222	53	14.6	27.7	na	13	na
		223	53.5	16.5	11.8	na	11	na
		224	53.5	16.5	15.9	na	11	na
		225	51.5	15.5	52.9	52	13	11
			58			2.5, <2, <2, <2, <2		13
						8.5, 7.1, 6,		
			59			14.5, 7.4		17
			59			27		17
			58			15, <2, <2, <2, <2		15
			58			8, 20		13
	Prosopis spp.	226	40	6.5	5.4	na	19	na

References

- Anon. 1886, Nicol Bay and De Grey, *The West Australian,* Perth, National Library of Australia.
- ARMCANZ & ANZECC 2000, Australian and New Zealand guidelines for fresh and marine water quality, National Water Quality Management Strategy paper no.
 4, Canberra, Australian and New Zealand Environment and Conservation Council and Agricultural and Resource Management Council of Australia and New Zealand.
- AUSRIVAS 2004, Australian River Assessment System AUSRIVAS bioassesment: macroinvertebrates.
- Bamford, M 2003. Jurien region Ecological water requirements study, prepared for Water Corporation by Welker Environmental Consultancy.
- Beard, J 1975, Vegetation survey of Western Australia: Pilbara. 1:1,000,000 vegetation series – explanatory notes to Sheet 5, Perth, University of Western Australia Press.
- Beesley, L 2006, *Environmental stability: its role in structuring fish communities and life history strategies in the Fortescue River, Western Australia,* School Of Animal Biology, Perth, University of Western Australia.
- Commander, DP, Martin, MW & Doherty, R 2004, *Increasing groundwater salinity in northwest Western Australia a result of exceptionally wet years,* Perth.
- Dames & Moore 1978, Environmental review and management programme De Grey River borefield, Port Hedland, Western Australia, Perth.
- Davidson, W 1974, *Hydrogeology of the De Grey River area*, Western Australian Geological Survey, Record 1973/27.
- DEC see Department of Environment and Conservation
- Department of Environment and Conservation 2009, Florabase.
- Department of Water 2009a, *Pilbara pool mapping, corporate GIS layer*, Perth, Department of Water.
- 2009b, *Wild rivers in Western Australia*, Water note no. WN37, Perth, Department of Water, Government of Western Australia.
- Douglas, MM, Bunn, SE & Davies, PM 2005, 'River and wetland food webs in Australia's wet-dry tropics: general principles and implications for management', *Marine and Freshwater Research*, 56, 329-342.
- Eamus, D, Froend, R, Loomes, R, Hose, G & Murray, B 2006, 'A functional methodology for determining the groundwater regime needed to maintain the health of groundwater-dependent vegetation', *Australian Journal of Botany*, 54, 97-114.
- Enesar Consulting Pty Ltd 2007, Atlas Iron Limited: the Pardoo DSO project, environmental management plan, Perth.
- Environment Australia 2001, *A directory of important wetlands in Australia,* 3rd Ed. Canberra, Environment Australia.

- George, A, Webster, I, Guarino, E, Thomas, M, Jolly, P & Doody, S 2002, *Modelling dry* season flows and predicting the impact of water extraction on a flag ship *species, final report for project 23045,* Canberra, CRC for Freshwater Ecology.
- Goater, S & Horgan, J 2006, Stygofauna investigations at the proposed Bulgarene water supply borefield Stygofauna pilot study, Perth, Water Corporation.
- Graham, J 2001, *The root hydraulic architecture of* Melaleuca argentea, University of Western Australia.
- Haig, T 2009, *The Pilbara coast water study*, Hydrogeological record series, Report no. HG34, Perth, Department of Water.
- HGM 1998, East Pilbara water supply augmentation: biological assessment, prepared for the Water Corporation, Perth, Halpern Glick Maunsell.
- 2001a, Bulgarene borefield water supply tree stress monitoring pilot study, Perth, Halpern Glick Maunsell.
- 2001b, Bulgarene borefield water supply: tree stress monitoring interim report July 2001, Perth, Halpern Glick Maunsell.
- 2002a. Bulgarene borefield water supply: tree stress monitoring December 2001, Perth, Halpern Glick Maunsell.
- 2002b, Bulgarene borefield water supply: tree stress monitoring August 2002, Perth, Halpern Glick Maunsell.
- Horwitz, P & Rogan, R 2003, *Ecological values of aquatic macroinvertebrates from wetlands of the Gnangara and Jandakot mounds, Joondalup,* Centre for Ecosystem Management, Edith Cowan University.
- Kay, WR, Smith, MJ, Pinder, AM, McRae, JM, Davis, JA & Halse, SA 1999, 'Patterns of distribution of macroinvertebrate families in rivers of north-western Australia', *Hydrobiology*, 41, 299-316.
- Kendrick, P & Stanley, F 2002, Pilbara 4 (PIL 4 Roebourne synopsis). In *A biodiversity audit of Western Australia's 53 biogeographical subregions in 2002*, Perth, Department of Conservation and Land Management.
- Landman 2001, *The ecology and physiology of acacias and eucalypts in the Pilbara region of Western Australia*, Perth, University of Western Australia.
- Martin, WM 1996, *De Grey borefield review and investigation programme 1996,* Hydrogeology report no. 34/1996, Perth, Water and Rivers Commission.
- Massini, RJ 1988, *Inland waters of the Pilbara, Western Australia (part 1)*, Technical series no. 24 Perth, Environmental Protection Agency.
- Massini, RJ & Walker, T 1989, *Inland waters of the Pilbara, Western Australia (part 2).* Technical series no. 24, Perth, Environmental Protection Agency.
- Morgan, D, Ebner, B & Beatty, S 2009, *Fishes in groundwater dependent pools of the Fortescue and Yule rivers, Pilbara, Western Australia,* Perth, Centre for Fish and Fisheries Research, Murdoch University.
- Morgan, D, Gill, H, Allen, M & Maddern, M 2003, *Distribution and biology of fish in inland waters of the Pilbara (Indian Ocean) drainage division, project no. 003026,* Perth, Centre for Fish and Fisheries Research, Murdoch University.

- Muir Environmental 1995, Possible long-term impacts of the Yandicoogina iron ore project on riverine species along Marillana Creek, unpublished report prepared for BHP and AGC Woodward-Clyde, Perth.
- MWH Australia Pty Ltd 2007, *Atlas Iron Limited, Pardoo direct shipping iron ore surface water hydrology*, Perth.
- O'Grady, AO, Eamus, D, Cook, P. Lamontagne, S, Kelly, G & Hutley L 2002, *Tree* water use and sources of transpired water in riparian vegetation along the Daly River, Northern Territory, Department of Environment and Heritage, Canberra.
- Outback Ecology Services 2004, Bulgarene borefield (De Grey River) Port Hedland water supply terrestrial fauna study, Perth.
- Paczkowska, G & Chapman, AR 2000, *The Western Australian flora: a descriptive catalogue,* Perth, Wildflower Society of Western Australia, Western Australian Herbarium, Botanic Gardens and Parks Authority (WA).
- Pettit, NE & Froend, R 2001, 'Variability in flood disturbance and the impact on riparian recruitment in two contrasting river systems', *Wetlands Ecology and Management*, 9, 13-25.
- Pinder, AM & Leung, A 2009, *Conservation status and habitat associations of aquatic invertebrates in Pilbara coastal river pools,* a report to the Department of Water, Perth, Science Division, Department of Environment and Conservation.
- Pusey, B, Kennard, M & Arthington, A 2004, *Freshwater fishes of north-eastern Australia,* Antahn, Qld, CSIRO Publishing.
- Ruprecht, J & Ivanescu, S 2000, *Surface hydrology of the Pilbara region: summary report,* Surface water hydrology report series, Report no. SWH 32, Perth, Water and Rivers Commission.
- Strategen 2006, Draft Bulgarene borefield (De Grey River) vegetation sensitivity study, a report to the Water Corporation, Perth.
- Van Dam, R, Storey, A, Humphrey, C, Pidgeon, B, Luxon, R & Hanley, J 2005, Bulgarene borefield (De Grey River) Port Hedland water supply, aquatic ecosystems study, Darwin, National Centre for Tropical Wetland Research
- Water and Rivers Commission 2004, *De Grey River basin, statewide assessment of river water quality,* Perth.
- Water Corporation 1998, *De Grey source investigation report: Port Hedland water supply augmentation,* Perth.
- Woodward-Clyde 1997, Newman satellite development of Orebody 23 below the watertable: consultative environmental review, unpublished report prepared for BHP Iron Ore, Perth.
- Worley Parsons 2005, *De Grey groundwater resources: Bulgarene borefield model, volume 1 – Model development and calibration,* Perth.

Looking after all our water needs

Department of Water

168 St Georges Terrace, Perth, Western Australia PO Box K822 Perth Western Australia 6842 Phone: (08) 6364 7600 Fax: (08) 6364 7601 www.water.wa.gov.au