

Proposed Technical Rules Changes

Technical Rules Implementation

- Comments are on the current proposal only.
- The rules have been discussed at the Technical Rules committee
- These changes to the Rules are not approved.

User Exemptions

- 1.9.1
- Network Service provider must consult with IMO and/or System Management before granting an exemption

Voltage Step Limits

2.2.2

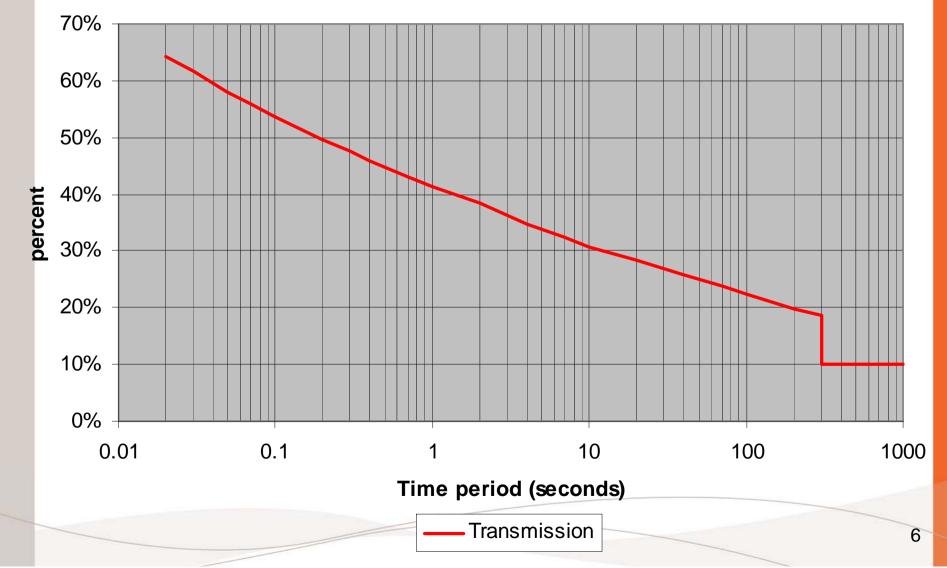
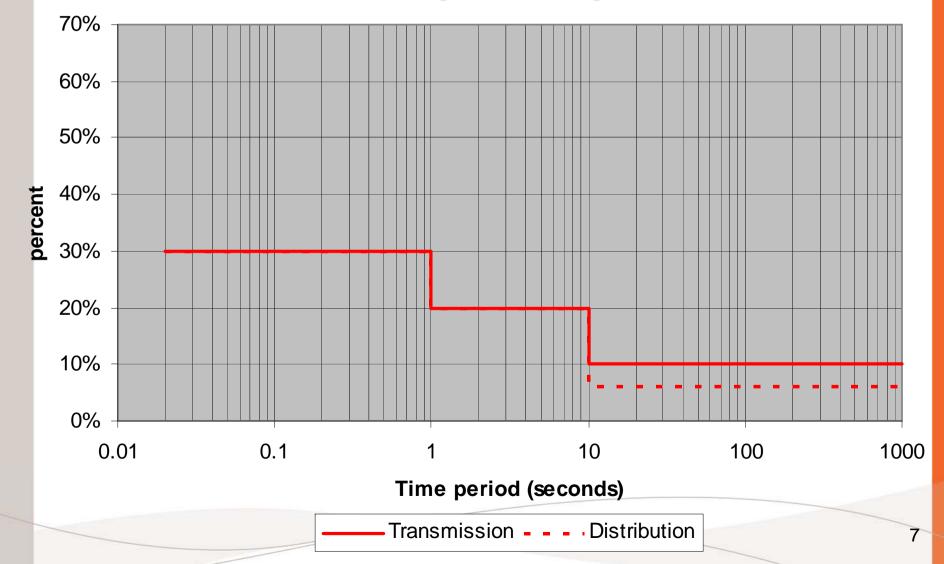

- Updated to be consistent with AS61000.3.7
- Infrequent switching limits remain unchanged
- Routing switching limits dependent upon frequency of switching

Table 2.2 – Step Change voltage limits

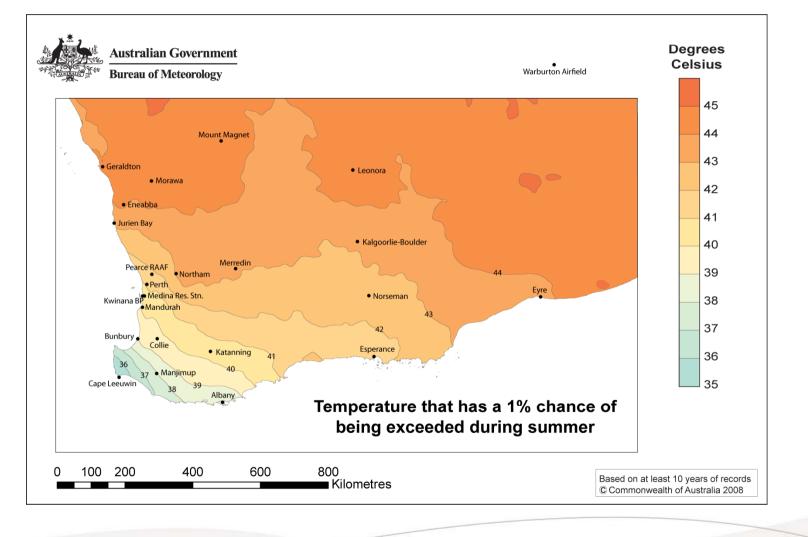
Cause	Pre- <u>switching</u>			Post- <u>switching</u> tap-changing	
	(quasi steady-state) <mark>and</mark>			(final steady state)	
	during tap-changing				
				<u>Transmission</u>	Distribution
Routine Switching ⁽¹⁾	<u>r</u> (hour ⁻¹)	$\frac{\underline{U}_{dvn}^{(3)}/\underline{U}_{N}^{(4)}}{(\%)}$		<i>Transmission</i> <i>voltages</i> must be between 110%	Must attain previous set point
		Distribution	<u>Transmission</u>	and 90% of nominal <i>voltage</i>	
	<u>r≤1</u>	±.4.0%	<u>±3.0%</u>		
	$\frac{1 < r \le}{10}$	<u>±3.0%</u>	<u>±2.5%</u>		
	$\frac{10 < r \le}{100}$	<u>±2.0%</u>	<u>±1.5%</u>		
	$\frac{100 < r \le}{1000}$	<u>±1.25%</u>	<u>±1.0%</u>		
Infrequent Switching ⁽²⁾	+6%,			Transmission	Must attain
	-10%			<i>voltages</i> must be between 110% and 90% of	previous set point
				nominal voltage	


Percentage overvoltage

Percentage overvoltage

Percentage overvoltage

Percentage overvoltage

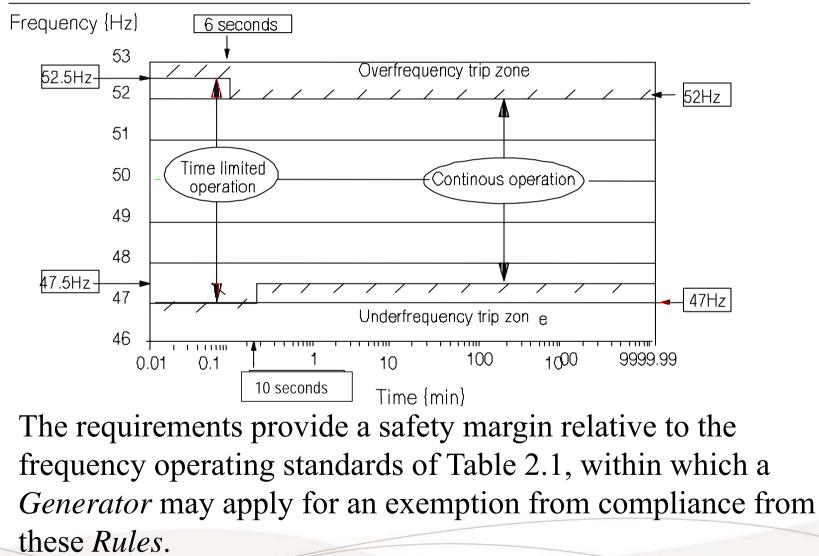

Percentage Overvoltage 3.2.1 (a)

Users proposing to connect equipment that is intolerant of high connection point voltage may request the Network Service Provider to undertake a study to determine the maximum potential overvoltage at the proposed connection point. The cost of such a study will be the responsibility of the User requesting it.

Negative sequence voltage 3.2.1 (d)

- Measurement of negative sequence voltage is now 10 minute averages rather than 30 minute
- Transmission connected customers must be connected to all three phases.

Reactive Power Capability 3.3.3.1 (a)


10

Reactive Power Capability 3.3.3.1 (b)

 Requirement for continuous varying reactive power without reliance on mechanically switched devices. Reactive Power 3.3.3.1 (e, f, g)

- Reactive power can be provided by devices other than the generator
- Reactive power control must be coordinated between all sources of reactive power
- Reactive power output can be reduced for lower voltages but the current must be maintained at rating.
- A capital contribution can be used to offset reactive requirements

Frequency Excursions 3.3.3.3 (b)

13

Post fault reactive power 3.3.3.3 (f)

Explanatory note added

This requirement is intended for undervoltage situations where a generator is potentially exacerbating the problem.

Rate of Response 3.3.4.4 (f)

- Response requirements explicitly defined for wind and solar.
- 90% of response within 2 seconds
- A reduction in output is required for frequency increase.
- Increase in output for frequency decline is not required for non synchronous generating units.

Ramping rates 3.3.4.4(b)

A power station that is not subject to dispatch by System Management must not increase or decrease its active power generation at a rate greater than 10MW per minute or 15% of the *power station's* aggregate nameplate rating per minute, whichever is the greater, except when more rapid changes are necessary due to the strength of the energy source moving outside the *power* station's design range.

Control System 3.3.4.5

Changed from:

Each *Generator* must therefore provide sufficient *reactive power* injection into, or absorption from, the *transmission or distribution system* to meet the *reactive power* requirements of its *loads*, plus all *reactive power* losses required to deliver its real power output at system *voltages* within the ranges specified in the relevant *connection agreement* for normal operation and contingency conditions.

Control System 3.3.4.5

To:

The overriding objective of a *generating unit's voltage control system* is to maintain the specified *voltage* range at the *connection point*.

Control System 3.3.4.5

Measured at the point of control, the *generating unit* must be capable of producing an output change of not less than 100% of its *reactive power generation* capability for a sustained 0.5% error between the *voltage* reference and the sensed *voltage*

Small Generators

3.6.3 (a)

- Clarified that additional data may be required.
 3.6.5
- Non synchronous generators can use power factor control unless system studies show a requirement for voltage control.

3.6.8

 Voltage change 2% limit changed where the generator is contracted to provide voltage control services.

Small Generators

3.6.10 Protection

- Clarification to protection requirements.
 Only for system security and not to protect generator's facility.
- 3.6.10.1 (g)
- The earth fault protection scheme may be residual earth fault or neutral voltage displacement depending on the earthing arrangement.

3.6.10.3 Small Generators – Islanding Protection

- For power stations rated >1 MVA Physically separate relays are required for each islanding protection.
- (d)

(C)

 For power stations rated < 1 MVA islanding protections can be in the same relay provided the overcurrent relay is physically separate.

Small Generators

- **3.6.12**
- Failure of generator protection must trip the generator main switch except:
- Where the protection system comprises two fully independent protection schemes of different principle.
- This will require suitable alarms and action.

Technical Rules Implementation

- These changes to the Rules are not approved.
- Approval has been delayed due to concerns over PV systems.