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Abstract: 
 
This report describes the research findings of Phase 3 of the Indian Ocean Climate 
Initiative (IOCI). IOCI is a five-year program of research into the effects of the Indian and 
Southern Oceans on interseasonal to interdecadal climate variability in the South West 
region of Western Australia, and the development of operational seasonal outlooks that 
have sufficient skill for effective decision making. IOCI was established through a 
partnership of federal and state government agencies. Key findings include: (1) the 
underlying causes of the observed winter rainfall decline is not simply due to changes in 
Indian Ocean sea surface temperatures; (2) there has been an abrupt shift and a clearly 
defined trend in the frequency characteristics of the synoptic patterns that influence 
rainfall occurrence; (3) the timing of the shift appears to coincide with the well-
documented change in the behaviour of the El-Niño that occurred in the mid 1970s. The 
trend appears to be due to a different mechanism, and its interaction with El-Niño; (4) a 
new approach to modelling shifts in, and interactions between, climate processes has been 
developed to investigate this phenomenon further; (5) long climate model simulations 
indicate that the recent low precipitation sequence is uncommon but not extreme; (6) 
natural climate variability is the most likely major cause of the observed reduction in 
winter rainfall; (7) the enhanced greenhouse effect may have contributed to the winter 
rainfall decline; and (8) there is some skill in predicting total rainfall and mean 
temperatures for spring and summer, and extreme temperatures in summer. 
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Foreword 

Foreword 

The Indian Ocean Climate Initiative (IOCI) was established in Western Australia on 
January 1, 1998.  Its role is to pursue the overlapping interests of several economic sectors 
in respect to research, development and applications relating to climate variability.  The 
program was stimulated by desire to gain regional economic and environmental benefit 
from contemporary national and international climate research.  The Initiative was given 
added impetus by concerns as to the implications of the 25-30 year long sequence of low 
winter rainfalls which was being experienced in south-west Western Australia.  

The low rainfall sequence continues, and the winter of 2001 has been the driest on record 
for a large area of the South West. This situation is of major concern to climate-affected 
industries and to natural resources management in the region. Regional averages and 
understandings of climate variability and risk are being altered forever by this experience.  
The changes are large and have major implications economically, environmentally and 
socially.  There is a need to assist decision-making with a greater understanding of the 
climatic phenomena of southern and western Australia, including the influences of the 
Indian and Southern Oceans. 

Initially, IOCI was formed as a program of strategic research into the effects of the Indian 
and Southern Oceans on climate variability in south-western Australia. It is a 
contributing partnership of central government and government agencies in Western 
Australia with involvement in climate issues. A number of agencies that had worked, semi-
independently, on climate research saw the need for a program that could develop regional 
applications from broader scale national research activities. The initial research contracts 
provide $300,000 per year for a core program from Jan 1998 to Dec 2002. The core 
research is conducted by the Bureau of Meteorology Research Centre, and by the CSIRO 
divisions of Atmospheric Research, Land and Water, and Mathematical and Information 
Sciences.  The research institutions match the partnership inputs through in-kind 
contributions.  

The objectives of IOCI are to gainfully improve management decisions of climate-affected 
industries, and environmental management, through:  

improved understanding and definition of inter-annual and inter-decadal climate 
variability; and  

• 

• enabling seasonal outlooks with sufficient skill for operational decision making.  

The potential beneficiaries include: agriculture; water supply; forest fire control; wetlands 
management; water resources management; public health; tourism; conservation of bio-
diversity and nature reserves; urban and industrial infrastructure; finance and insurance.  

The initial 5 year program has three research phases  as follows:  

First Research Phase:  Jan 1998 to June 1999 (report published) 

Second Research Phase:  June 1999 to Dec 2000 (this report) 

Third Research Phase: December 2000 to December 2002 (work in progress) 
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Foreword 

Since embarking on its strategic program IOCI has become increasingly aware of the 
significance of longer-term change and variability to its research goals and to the issues 
confronting decision-makers.  IOCI research has reached a view that the observed climate 
behaviour of the last 25 - 30 years in south-western Australia is best interpreted as a 
change of climate state.  This altered state is associated with changes in atmospheric 
circulation and is evident as changes in some previously recognised climatic relationships 
and norms. 

 As a consequence of these changes IOCI has needed to look at human influences on climate 
behaviour as well as natural change and long term natural variation.  Although there is a 
strong probability that Greenhouse gas accumulations in the atmosphere will lead to a 
rainfall decline in south-western Australia, the evidence suggests that the observed rainfall 
decline began too soon to be solely attributable to enhanced Greenhouse effects and that 
there are other, possibly natural, causes involved. Modelling also suggests such dry 
situations may have occurred before under natural conditions.  The explanation for the 
decline is important to adaptive decision-making and is being pursued further in current 
research.  

The climate application issues of south-western Australia, for which IOCI is providing 
support, might be seen in two distinct priority levels.  Support to inter-seasonal 
forecasting represents opportunity.  Support for adaptation to climate change represents 
necessity.  Large changes in south-western climate have made the adaptation issue one of 
immediate concern.  Decision-makers need support in making appropriate judgements 
about future climate baselines as a basis for sound adaptation strategies and these issues 
are occupying increasing attention in IOCI's program .    

IOCI is already progressing on the third research phase of its core program.  A key part of 
this current phase will be the publication of a report, especially for decision-makers, 
consolidating the state of knowledge on South West climate variability up to June 2002.  
This proposed publication will be accompanied by educative seminars or workshops. 

The IOCI Panel is now pleased to be distributing the underlying report of its second phase 
of core research activity.  The Panel believes the report represents another important step 
in consolidating and developing an understanding of the variability of the climate in 
southern and western Australia.   

The report is commended for study by those who have need to make plans or decisions 
which must consider the effects of climate variability. 

 

 

 

Brian Sadler 
Chair IOCIP  
October 2001 
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Summary 

Summary  
 
This report marks the conclusion of IOCI Phase 3. It follows a two-day national seminar and 
workshop (IOCI2000) held in Perth in November 2000 at which progress reports were 
presented by the research groups in draft form. Leaders in the science and application of 
interseasonal climate forecasts were invited to IOCI2000, and a high level of national and 
international expertise was assembled. The seminar program provided an overview of the 
growing state of knowledge about climate variability in southwest Western Australia (SWA) 
while the workshop provided a peer review of the research findings and the direction of the 
proposed research program for 2001 to 2002. The workshop was productive and led to 
general agreement about future research directions.  
 
The following report is comprised of four parts. The research outcomes support a number of 
broad conclusions that may be summarised as follows:  
 
The Drying Trend 
 
• Further investigation supports the viewpoint that the underlying causes of the observed 

reduction in SWA winter rainfall is not simply due to changes in Indian Ocean sea surface 
temperatures (SSTs).  

• Analysis of the results obtained from a stochastic downscaling model revealed an abrupt 
shift and a clearly defined trend in the frequency characteristics of the synoptic patterns 
that influence precipitation occurrence over SWA. The timing and nature of these changes 
are consistent with the characteristics of the observed low precipitation sequence.  

• The changes in the frequency characteristics of the synoptic patterns and the resultant low 
precipitation sequence since the mid 1970s are due to changes in a combination of 
atmospheric variables reflecting the location and intensity of low and high pressure 
systems, and the moisture content of the lower troposphere. The low precipitation 
sequence cannot be ascribed to change(s) in a single variable such as mean sea level 
pressure.  

• The timing of the shift appears to coincide with the well-documented change in the 
behaviour of the El-Niño – Southern Oscillation that occurred in the mid 1970s. The trend 
appears to be due to a different mechanism, and its interaction with El-Niño.  

 
Seasonal Predictions  
 
Linear Statistical Methods 

The potential for using near-global patterns of sea surface temperature variation in seasonal 
climate prediction for SWA was examined. The climate variables examined were proposed by 
Panel members as being important for agriculture or environmental and water resource 
management in the southwest. Some skill was possible in predicting total rainfall and mean 
temperatures for spring and summer, as well as predicting extreme temperatures in summer. 
These predictions would be available a month or two in advance of the season predicted. 
 
The potential use of some newly proposed modes of climate variation, known as the 
Antarctic Circumpolar Wave (ACW) and the Indian Ocean Dipole (IOD), was also examined. 
Some evidence was found that these modes might be related to SWA climate. Subsequent 
work, since the end of the second IOCI research phase, has found, however, that these modes 
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Summary 

do not improve on the predictions available using the near-global patterns of sea surface 
temperature variability referred to above. This is because both the ACW and the IOD are 
closely related to the El Niño - Southern Oscillation, which is also represented in the near-
global sea surface temperature patterns. 
 
At the request of Panel members, some preliminary work was done to investigate whether 
observed climate variations could be used to predict crop yields. It was found that early 
seasonal rainfall and temperature were good predictors of wheat yield. This provided more 
accurate predictions than did the near-global sea surface temperature patterns. The 
relationship between early winter climate and yield probably occurs partly because of farmer 
reactions to the early winter climate – if the climate early in the season is good, then farmers 
will plant early and this will tend to lead to good yields. 

 
Nonlinear Statistical Methods 

An alternative perspective on seasonal prediction could be provided by so-called nonlinear 
statistical methods. These methods allow for behaviour such as the sudden break that has been 
observed in the southwest’s rainfall, which is not a feature of straightforward linear behaviour. 
Nonlinear methods therefore provide a broader framework within which to search for climate 
predictors.  

• A physically motivated statistical model for modelling nonlinear climate processes has 
been developed. The approach can now be applied to practical problems.  

• The nonlinear method can identify good predictors and the lags at which they influence 
climate variables, such as rainfall. Within this modelling framework, changes between 
climate regimes are triggered by a switching variable, and comparisons between 
alternative switching variables can be made.  

• We would expect broad scale climate features to be good candidates to cause switching 
behaviour. Examples include, amongst others, large-scale circulation patterns, the El Niño-
Southern Oscillation (as measured by SOI), and Indian Ocean SSTs. These may operate 
individually or in combination. 

• There is some evidence that SOI and mid-Indian Ocean SST gradients play a role in 
switching between rainfall regimes. At this stage, this is cited as evidence that the new 
nonlinear method is producing sensible results, rather than new insights per se.  

• Interactions between climate processes are likely to influence rainfall in SWA. Some 
reasonably straightforward extensions to the nonlinear method will facilitate the search for 
subtler climate teleconnections arising from such interactions. 

 
Numerical Climate Models and Stochastic Downscaling 

The Phase 1 report documented results from the CSIRO climate model referred to as Mark2. 
Further analysis of these results has continued but, at the same time, a new climate model 
(Mark3) has been developed and used to address several key questions. When forced by 
observed sea surface temperatures (SSTs), the Mark3 model provides better simulations of 
rainfall over SWA. This improvement is seen in both the representation of the seasonal cycle, 
the amplitude of the seasonal cycle and the amplitude of interannual variations.   

The downscaling model described in the Phase 1 report has also been further tested in order 
to improve the representation of rainfall at both the local and monthly time scale.  
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Interdecadal Variability  
• Stochastic downscaling of the 1000-year long simulation with the Mark2 model indicates 

that the recent low precipitation sequence over SWA is uncommon but not extreme. 

• Results from a much longer 10,000-year simulation with the Mark2 model confirm the 
earlier analyses, which indicate that annual rainfall totals over SWA can exhibit 
variability on decadal, multi-decadal, and even millennial time scales due to internal 
processes. The results did not reveal any links between changes in rainfall at these time 
scales and changes in other variables such as SSTs.  

• The Mark3 model has been forced by observed SSTs for the period 1949 to 1990. The 
results from an ensemble of three such experiments do not show any evidence of a 
protracted reduction in rainfall over the period when the observed reduction took place. 
This type of result has also been noted in other climate model experiments. This tends to 
suggest that: 

1. Owing to sparse observations in some regions, the SST data used in the model 
experiments may not accurately reflect changes that may have taken place and which 
may be responsible for the decline, or 

2. There are other factors involved which are not represented in these “forced” SST 
experiments, or 

3. Rainfall is not sufficiently well simulated by large scale climate models to capture 
trends at the relatively small scales.  

 
Interannual variability  
• After revision of the set of atmospheric predictor variables used in the stochastic 

downscaling model, it was found that parameter estimates derived from atmospheric and 
precipitation data for the period 1978 to 1992, inclusive, could be used to simulate 
monthly precipitation over SWA for the period 1958-1998. This suggests that the model is 
robust against secular breaks in atmospheric circulation and precipitation, and that it may 
be a useful tool for downscaling an interseasonal climate forecast produced by a 
numerical climate model.  

• Results from the Mark2 1000-year simulation indicate that links between Indian Ocean 
SSTs and rainfall over SWA can be simulated as a consequence of changes in the 
atmospheric circulation driving pressure, winds, rainfall and SST changes rather than as a 
consequence of the SSTs driving the other variables. This tends to confirm previous 
results suggesting that the Indian Ocean offers little in the way of predictability of SWA 
winter rainfall.  

• Similarly, an analysis of the relationship between an Antarctic Circumpolar Wave -type 
phenomenon in the Mark2 model did not indicate that this provides a source of 
predictability for SWA winter rainfall. Nor was it possible to identify any link between 
high latitude Indian Ocean SSTs and SWA winter rainfall. 

• The Mark3 model results reveal weak evidence of links between SWA rainfall anomalies 
and SST anomalies in the Pacific Ocean, but no evidence of any significant links to the 
Indian Ocean. This is consistent with what is known about the limited predictability for 
this region during winter. 
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• A seasonal prediction model based on the Mark2 model has been developed and exhibits 
skill at predicting an index of El Nino/La Nina events. This suggests that, to the extent 
that these events have any effect on SWA winter rainfall, there may be some limited value 
in these predicted indices - particularly as they are predicted with lead times up to 12 
months. 

 
Greenhouse Simulations  
 
CSIRO climate model  
• The latest CSIRO climate change simulations using the Mark2 model comprise 

ensembles and also take into account a range of CO2 loadings and the effects of increased 
atmospheric sulphate content. The different experiments all yield decreases in annual 
rainfall of about -10% by the end of the 21st century. Combined with increased 
temperatures of up to +3.0 oC, they also indicate a decrease in soil moisture of about -15%. 

• In addition, an equilibrium climate change simulation (2×CO2 only) has been performed 
with the Mark3 model. This is a simplified, but relatively inexpensive, greenhouse 
simulation. The simulated global changes are somewhat less than the Mark2 results. 
Despite these differences, the results for SWA are similar.  

• None of the greenhouse simulations from either of the models show evidence of any 
significant decrease in rainfall for the SWA region over the period 1970-2000 (as has been 
observed). The internal (or "natural") variability in the various time series for rainfall 
tends to dominate any long-term trends over the latter part of the 20th century.  

• One interpretation of the CSIRO results is that the enhanced greenhouse effect may have 
made only a minor contribution to the observed reduction in SWA winter rainfall. 

 
Other climate models  
• The results of climate change experiments from several different models have been 

stratified according the ability of each model to reproduce the seasonal cycle of rainfall 
for SWA. As a result, only three models (the Hadley Centre model, the Geophysical Fluid 
Dynamics Laboratory (GFDL) model and the CSIRO Mark2 model) were selected.  

• Of these three, the Hadley Centre model yields the largest percentage decrease in 
SWA winter rainfall by the end of the 21st century while the GFDL model yields the least. 
As is the case with the Mark2 model, these two models do not simulate a significant 
reduction for the end of the 20th century.  

• However, the Hadley Centre model does simulate a similar magnitude reduction in 
winter rainfall over the period 2000-2025. If it is assumed that the Hadley Centre model is 
correct, except for an error in timing of about 25 years, then it is possible that the 
observed reduction may represent a substantial contribution from the enhanced 
greenhouse effect. 

• Reducing the uncertainties in the interpretation of the observed reduction and 
estimates for the future climate can be achieved by:  

(i) careful scrutiny of climate change simulations as they become available 

(ii) performing a range of analyses to detect significant signals in the results 

(iii) applying downscaling techniques in order to achieve more realistic estimates of 
expected changes in rainfall 
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Summary 

 
The first three years of the IOCI has been productive, and has heightened international 
scientific attention on southwestern Australia. The numerous and substantial findings of the 
third phase of research inspire confidence that further knowledge gains are possible, and that 
these gains will provide valuable social and economic benefits for the region.  
 
 

Bryson Bates 
CSIRO Land and Water 
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“You get a quite different set of meteorological conditions in the Indian 
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  SUMMARY OF BMRC PHASE 1 IOCI WORK (FROM NICHOLLS ET AL., 
1999) 
 
“BMRC has, through the first half of the IOCI (1998-99), been investigating the 
following problems, for the southwest of Western Australia: 
• 
• 
• 
• 
• 
• 
• 
• 

• 

• 

• 

• 

• 

• 

Selection of high-quality climate data for the southwest 
How surprising is the decrease in rainfall?  
Has extreme rainfall declined as well as total rainfall?  
Is the rainfall decrease due to changes in atmospheric circulation?  
Is the rainfall decrease attributable to changes in Indian Ocean SSTs? 
Can we develop better methods for seasonal prediction in the southwest?  
How does the El Niño - Southern Oscillation affect southwest rainfall?  
Can climate models help us in seasonal prediction in the southwest?  

 
Our achievements and preliminary conclusions from this work include: 
 

We have selected stations with high-quality daily/monthly rainfall, and daily 
temperature data over a long period, for analysis. These data sets can be made 
available to others interested in using high-quality climate data for the southwest. 
 
We have fitted statistical models to station rainfall and estimated the likely 
frequency of the observed runs of dry years in recent decades. They are unusual, in 
the historical context. We also have estimated breakpoints in the rainfall data series, 
where there is a sudden change in mean rainfall. The date of these breakpoints 
shows considerable spatial consistency, indicating that the breaks are real physical 
phenomena. 
 
Changes in the numbers of days of rain, and the amount of rain falling in extreme 
events, both have contributed to the decline in total rainfall. 
 
About half of the observed decline in rainfall is related to changes in regional 
atmospheric circulation, as represented by Perth atmospheric pressure. Part of the 
observed increase in Perth pressure represents changes in the El Niño - Southern 
Oscillation, as measured by the SOI. However, little of the observed rainfall decline 
is attributable to long-term changes in the El Niño - Southern Oscillation. 

 
Interannual variations in Indian Ocean SSTs are only weakly related to southwest 
rainfall, and even this weak relationship simply represents the effect of the El Niño - 
Southern Oscillation on both Indian Ocean SST and southwest rainfall, rather than 
an independent effect of the SSTs on rainfall. Since the interannual variations are 
not related, it seems unlikely that the long-term changes in both Indian Ocean SSTs 
and southwest rainfall are causally related. This conclusion is supported by the 
inability of climate models, when forced with observed SSTs over the 20th century 
to reproduce the observed decline in southwest rainfall.  

 
Secular changes have confounded the interannual relationships between the SOI and 
southwest rainfall, disguising some of the predictability achievable through the use 
of the SOI. An approach using year-to-year differences in the SOI has been 
proposed to overcome this confounding effect.” 
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BMRC PROPOSAL FOR IOCI SECOND RESEARCH PHASE (JULY 1999- 
DECEMBER 2000) AGREED JUNE 1999 

1. Specific seasonal climate forecast system for SWWA 
• Develop techniques using changes in the SOI from year-to-year, to predict 

southwest WA rainfall for selected stations at selected times of the year and at 
selected lead-times.  

• The possibility of developing an operational system for predicting summer 
climate factors, especially those relating to water demand, also will be 
investigated using near-global SSTs and the SOI.  

• The selected stations, seasons, and lead-times of the forecasts have been chosen 
after discussions with WA agency representatives.  
The stations will include a station representative of the Perth catchments area (Jarrahdale), Manjimup, and 
Kalgoorlie. If possible, Mingenew, Merredin, and Lake Grace will also be analysed 
The seasons will be winter (for rainfall May-October), and summer (December-February), for factors 
affecting water demand, eg,, mean temperature, temperature extremes, and rainfall).   

• The possibility of developing an operational system for forecasting winter 
rainfall at the end of April, using the SOI, will be investigated.   

• The possibility of forecasting the summer demand factors using September data 
(SSTs and SOI) will be investigated. 

• The possible value of the Antarctic Circumpolar Wave and southern Indian 
Ocean SSTs in prediction will be examined. 

 
There is a perception that the Southern Oscillation Index (SOI), until recently the basis for operational 
seasonal rainfall forecasting in Australia, is less effective in prediction for the southwest, relative to the 
eastern states. Nicholls (1989) identified a mode of variability of Indian Ocean SST that appeared to be related 
to rainfall in the south and southeast of the continent, somewhat distinct from the El Nino- 
Southern Oscillation mode affecting the eastern states. As a result, Drosdowsky and Chambers (1998) 
developed a new system for seasonal rainfall forecasting, now operationally implemented in the Bureau of 
Meteorology’s National Climate Centre, using Indian and Pacific Ocean SST patterns as predictors (replacing 
the earlier system which used just the SOI as a single predictor). The new method provides a longer lead time for 
the predictions, is more stable, and exhibits somewhat increased skill. However, skill in the new system is still 
greater in the east and north of the country and the system seems less effective in the southwest.  At the start of 
Phase 1, however, it was considered that further development of an SST- based system for seasonal prediction 
could lead to potentially useful forecasts for the southwest. This was because other work had identified an 
apparent link between southwest rainfall and Indian Ocean SSTs (eg, Smith et al 1999). However, work in Phase 
1 found that interannual variations in Indian Ocean SSTs are only weakly related to southwest rainfall, and even 
this weak relationship simply represents the effect of the El Nino - Southern Oscillation on both Indian Ocean 
SST and southwest rainfall, rather than an independent effect of the SSTs on rainfall. Phase 1 work also revealed 
that secular changes have confounded the interannual relationships between the SOI and southwest rainfall, 
disguising some of the predictability achievable through the use of the SOI. An approach using year-to-year 
differences in the SOI has been proposed to overcome this confounding effect, and may lead to potentially useful 
seasonal rainfall forecasts based on the SOI, rather than SSTs. Other Phase I work has indicated that seasonal 
temperature for the southwest, at least in some seasons, may be predictable using SSTs.  
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BMRC Proposal for IOCI Second Research Phase (July 1999- December 
2000), agreed June 1999 
2. Causes of decadal decline in rainfall in SWWA 
• Empirical studies and model studies will be used to continue our investigations of the 

underlying causes of the recent trend in rainfall in the southwest.   
• These investigations will include the use of model simulations forced with observed 

global SSTs, to determine whether the models can simulate the decline in rainfall. 
• Path analysis will be used in empirical studies to provide further light on the causes of 

this decline.   
• Variables such as wind direction will be investigated, to determine whether these can 

explain the apparent decline in rainfall and the secular changes in relationships 
between, for instance, the SOI and rainfall. 

 
Since the interannual variations of southwest rainfall are not related to interannual variations in Indian 
Ocean SSTs (see above), it seems unlikely that the long-term changes in Indian Ocean SSTs and 
southwest rainfall are causally related. This conclusion is supported by the inability of climate models, when forced with 
observed SSTs over the 20th century to reproduce the observed decline in southwest rainfall (Phase 1). Further model 
studies are needed to estimate the predictability of southwest rainfall from SSTs, using long-term simulations of the 
climate, and experimental model predictions conducted in real-time through 1997-98. As well, empirical studies using a 
path analysis technique may provide some guidance as to the possible causes of the apparent decline. 

 
************************************************************************* 

Additions to BMRC Second Research Phase studies requested by IOCI7, 
15 October 1999: 
• Examine predictability of September-November rainfall (for agricultural purposes), 

from data available at end of May, end of June, end of July, using stations selected for 
winter and summer.  

• Examine predictability of September-November temperature (for curing for fire risk), 
from data available at end of May, end of June, end of July, using stations selected for 
winter and summer. 

• Examine predictability of wheat yield (David Stephens to provide time series of wheat 
yield data). 

Further additions (March-May 2000): 
• Investigate whether equatorial Indian Ocean SST dipole is independent of the El Niño -

Southern Oscillation, and consider its possible use in seasonal prediction for SWWA. 
• Investigate whether long-term variations in SWWA rainfall are related to distant 

factors (e.g., rainfall trends in other parts of the globe). 
• Investigate whether SST gradients in the Indian Ocean are useful predictors for 

SWWA 
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RESULTS OF SECOND RESEARCH PHASE 

Specific seasonal climate forecast system for SWWA 

Seasonal climate predictability 

Target forecasts 
The forecasts requested were: 
 
• Winter (May to October) rainfall using the SOI and sea surface temperatures 

(SSTs) up to the end of April 
• Spring (September to November) rainfall using the SOI and SSTs up to the end of 

May, end of June and end of July 
• Spring (September to November) temperature (mean, mean maximum and mean 

minimum) using the SOI and SSTs up to the end of July 
• Summer (December to February) rainfall using the SOI and SSTs up to the end of 

September 
• Summer (December to February) mean maximum temperature 
• Summer (December to February) temperature extremes 
 

When considering extreme temperatures, the mean maximum temperature, the 
number of days over 35°C, and the number of days over 40°C were examined. 

Method 
A statistical forecast scheme similar to that of Drosdowsky and Chambers (1998) and 
Jones (1998) was adopted.  This is an empirical forecast scheme based upon linear 
discriminant analysis.  Lagged values of the predictor variables time series (eg., SST 
time scores, SOI) are used to forecast the probability of the predictand (eg., rainfall) 
being in pre-defined categories (terciles - three equally probable categories). Linear 
Error in Probability Space (LEPS) was used to assess the potential skill of the 
prediction systems, using cross-validation to account for artificial skill (Drosdowsky 
and Chambers, 1998). The LEPS skill score ranges from 100 (for perfect forecasts) to 
–100 (worst possible forecasts).  Positive values over indicate potentially useful 
forecast system. LEPS is notoriously difficult to interpret, other than in relative terms 
(i.e., comparing two forecast methods). We provide, therefore, scatter diagrams of 
predictor versus predictand for selected, representative pairs of predictor-predictand, 
to allow a more ready interpretation of skill. These also illustrate how typical ranges 
of LEPS translate into more readily interpretable skill scores such as the number of 
“hits”.  
 

Station Information 
Available data for the six sites of interest are listed in Table 1.  As the forecast models 
were based on data from 1950 to the present, some filling of the temperature data sets 
was needed and is described below. For most of the stations in Table 1 additional 
temperature data, to fill in the missing data, were available from stations within a 100 
km (or even 50 km) radius. Table 2 lists the additional temperature stations selected 
for further testing for each of the stations of interest (Table 1). 
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Table 1: Station information.  * indicates that temperature data is available from 1957 from 
a site within a few kilometres (09573). 

Station Name Station Number Rainfall From Temperature From/To 
Mingenew 08088 1896 1965-1975 
Jarrahdale 09023 1882 not available 
Lake Grace 10592 1912 1956 - 
Merredin 10092 1903 1966 - 
Manjimup 09619 1900 not available* 
Kalgoorlie 12013 1897 not available 

 

Table 2: Additional stations  (used for filling missing data).   

Station Name Additional Station Numbers 
Mingenew 08025, 08039, 08051, 08093, 08095 
Jarrahdale 09021, 09538, 09534, 10648 
Lake Grace 10073, 10035, 10536, 10579 
Merredin 10007, 10035, 10073, 10093, 10536 
Manjimup 09510, 09534, 09538, 09573 
Kalgoorlie 10073, 10092, 10093, 12038 

 
A simple linear correlation test was used to select the station (or stations) with the 
strongest (linear) relationship to the stations in Table 1. In the case where no 
temperature was recorded at the station in Table 1 the closest station was used and 
gaps filled using other nearby stations. For Jarrahdale the closest station was 09538, 
for Manjimup, 09573 and for Kalgoorlie, 12038. Table 3 lists the order in which 
stations were used to fill gaps. The first station listed was used unless a gap exists in 
that record, in which case the second station was used, and so on. On all occasions we 
were able to fill all gaps using the lists in Table 3 and, in most cases, used only the 
first 2 or 3 stations. 

Table 3: Order of stations used to fill gaps in the record. 

Station Name Station Order 
Mingenew 08088, 08095, 08093, 08025, 08039 
Jarrahdale 09538, 09021, 09534, 10648 
Lake Grace 10592, 10536, 10579, 10073, 10035 
Merredin 10092, 10093, 10007, 10035, 10073 
Manjimup 09573, 09510, 09534, 09538 
Kalgoorlie 12038, 10092, 10093, 10073 

 
Linear regression was used to relate the temperature at the stations in Table 1 (or the 
first station in the list of Table 3) with subsequent stations in the list (Table 3), for gap 
filling.  
 
Predictors 
 
Time series of the first two principal components (SST1 & SST2) of a near global 
empirical orthogonal function (EOF) analysis of sea surface temperatures (SST) were 
included as possible predictors. The first EOF, SST1, (Figure 1) has highest loadings 
in the central and eastern equatorial Pacific Ocean and in the Indian Ocean and 
represents the mature phase of an El Niño / Southern Oscillation (ENSO) event. The 
second EOF, SST2, has highest loadings just west of the Australian continent, 
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extending northwest to the central equatorial region.  The southern oscillation index 
(SOI) was also included as a potential predictor. 
 
Winter (May to October) 
Forecasts were made for winter (May to October) rainfall terciles at each of the six 
stations in Table 1.  A number of different predictors were considered:  
 
April SST1;  
April SST2;  
April SST1 and SST2;  
February and April SST1;  
February and April SST2;  
February and April SST1 and SST2;  
February to April (FMA) SST1;  
FMA SST2;  
FMA SST1 and SST2;  
Mean of December to February (DJF) and FMA SST1;  
DJF and FMA SST2;  
DJF and FMA SST1 and SST2;  
April SOI;  
February and April SOI;  
FMA SOI; and  
DJF and FMA SOI.   
 
This represents a total of 16 possible forecast systems for each of the six stations, i.e. 
there are four systems using the SOI (with the SOI in different as predictor), four 
using just SST1, four using SST2, and four systems using both SST1 and SST2. 
 
Table 4 lists the number of times that a positive LEPS score was obtained from these 
various systems, categorised according to whether the SOI, SST1 only, SST2 only, or 
both SST1 and SST2, were used.  The LEPS scores were below 10 in all cases, with 
the highest LEPS score of 7.73 for Manjimup using the DJF and FMA SOI values. 

Table 4: Winter Rainfall: Number of positive LEPS scores obtained.  A maximum of four is 
possible in each of the grid cells. 

Station Name SST1 SST2 SST1&2 SOI 
Mingenew 2 1 2 1 
Jarrahdale 3 0 1 3 
Lake Grace 2 0 1 2 
Merredin 0 0 0 0 
Manjimup 4 1 2 4 
Kalgoorlie 1 1 1 1 

 
The skill of the forecast systems was also examined using the first differences of all 
the data (i.e., the rainfall, SST and SOI data series). The results are summarised in 
Table 5.  The number of skilful rainfall forecasts for Mingenew increased when the 
data were differenced, while for Manjimup the number tended to decrease. As was the 
case with the “raw”, undifferenced data, there were no LEPS scores over 10. The 
highest score was 5.47, for Mingenew using DJF and FMA SSTs 1 and 2. 
 
The question of whether these forecasts could be improved by using May, April and 
May (MAM), or JFM and MAM SSTs or SOI values, was then addressed. The results 
for the raw data are listed in Table 6, while Table 7 lists the results for the first 
differenced data. Comparing Tables 4 and 6 indicates that there are some 
improvements in skill when using the later data in the forecasts (Table 6).  This is also 
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the case for the differenced data (compare Tables 5 and 7). With the later data used in 
the forecast we get the first LEPS score over 10 (11.48 for Manjimup using May 
SST1 and 2 values). The LEPS scores for the differenced data were generally lower 
than for the raw data. 

Table 5: Differenced Winter Rainfall: Number of positive LEPS scores obtained for first 
differenced data. A maximum of four is possible in each of the grid cells. 

Station Name SST1 SST2 SST1&2 SOI 
Mingenew 4 1 4 0 
Jarrahdale 2 3 2 0 
Lake Grace 1 0 0 1 
Merredin 0 2 2 2 
Manjimup 0 2 0 0 
Kalgoorlie 0 2 1 1 
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Figure 1. First two VARIMAX rotated empirical orthogonal functions (EOFs) of the 
standardised monthly anomalies of the sea surface temperature data (Drosdowsky and 
Chambers, 1998). 

 
 

Table 6: Winter Rainfall using later predictors: Number of positive LEPS scores obtained.  
A maximum of four is possible in each of the grid cells. 

Station Name SST1 SST2 SST1&2 SOI 
Mingenew 2 0 0 4 
Jarrahdale 4 0 3 4 
Lake Grace 4 0 2 4 
Merredin 2 0 0 0 
Manjimup 3 2 2 1 
Kalgoorlie 1 1 1 1 
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Table 7: Differenced Winter Rainfall using later predictors: Number of positive LEPS scores 
obtained for first differenced data.  A maximum of four is possible in each of the grid cells, 
except for SST1&2 where only three combinations were possible. 

Station Name SST1 SST2 SST1&2 SOI 
Mingenew 4 3 1 1 
Jarrahdale 0 1 0 0 
Lake Grace 0 2 1 3 
Merredin 0 1 0 1 
Manjimup 0 1 1 1 
Kalgoorlie 4 0 2 0 

 
No predictor set gave positive LEPS scores for all six stations. Overall, the 
performance of the linear forecast techniques on winter rainfall was poor, with little 
evidence that useful forecasts would be obtainable. 
 
Spring (September to November) 
Rainfall 
A similar analysis to that outlined above was carried out for spring (September to 
November) rainfall. Four groups of analyses were considered. These used predictors 
available at the end of May, June or July, or used differenced data with predictors 
ending in July. Tables 8 to 10 indicate that the prediction of spring rainfall was 
generally more skillful when using data from up until the end of July rather than 
relying only on the earlier (May or June) predictors. However, the skill levels in all 
cases were fairly low with very few cases of LEPS scores over 10.  The ‘best’ 
predictor overall, when using data until the end of July, was (marginally) SST1. 
However, if Mingenew and Kalgoorlie are excluded, then the SOI is also a potentially 
useful predictor.  For most stations, using differenced data tended to either reduce the 
skill of the predictions, or have little effect (Merredin and Kalgoorlie). 

Table 8: Spring rainfall (predictors until end of May): Number of positive LEPS scores 
obtained. A maximum of four is possible in each of the grid cells (i.e., using either May, 
March and May, MAM, or JFM and MAM, as predictors). The number of LEPS scores 
greater than 10 are given in brackets. 

Station Name SST1 SST2 SST1&2 SOI 
Mingenew 0 (0) 2 (0) 1 (0) 0 (0) 
Jarrahdale 4 (0) 4 (0) 4 (0) 3 (0) 
Lake Grace 2 (0) 4 (0) 4 (0) 4 (0) 
Merredin 0 (0) 0 (0) 0 (0) 4 (0) 
Manjimup 4 (1) 1 (0) 4 (1) 4 (0) 
Kalgoorlie 1 (0) 0 (0) 0 (0) 0 (0) 

Table 9: Spring rainfall (predictors until end of June): Number of positive LEPS scores 
obtained. A maximum of four is possible in each of the grid cells (June, April and June, AMJ, 
FMA and AMJ).  There were no LEPS scores greater than 10. 

Station Name SST1 SST2 SST1&2 SOI 
Mingenew 0 3 2 0 
Jarrahdale 4 4 4 4 
Lake Grace 3 3 4 3 
Merredin 1 0 0 3 
Manjimup 4 1 4 4 
Kalgoorlie 0 0 0 1 
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Table 10: Spring rainfall (predictors until end of July): Number of positive LEPS 
scores obtained. A maximum of four is possible in each of the grid cells (July, May and July, 
MJJ, MAM and MJJ).  The number of LEPS scores greater than 10 are given in brackets. 

Station Name SST1 SST2 SST1&2 SOI 
Mingenew 2 (0) 2 (0) 4 (0) 0 (0) 
Jarrahdale 4 (0) 4 (0) 4 (0) 4 (0) 
Lake Grace 2 (0) 4 (0) 4 (0) 4 (0) 
Merredin 2 (0) 0 (0) 0 (0) 3 (0) 
Manjimup 4 (1) 3 (0) 4 (1) 4 (0) 
Kalgoorlie 1 (0) 1 (0) 1 (0) 0 (0) 

Table 11: Differenced Spring Rainfall (predictors until end of July): Number of 
positive LEPS scores obtained for first differenced data. A maximum of four is possible in 
each of the grid cells, except for SST1&2 where there were only three possible combinations. 
There were no LEPS scores over 10. 

Station Name SST1 SST2 SST1&2 SOI 
Mingenew 1 1 1 2 
Jarrahdale 2 3 2 1 
Lake Grace 4 2 3 2 
Merredin 2 0 1 3 
Manjimup 3 0 1 2 
Kalgoorlie 1 1 0 3 

 
Temperature 
 
Forecast systems for mean temperature, and for mean maximum and mean minimum 
temperatures for spring (September to November) were tested. As spring rainfall was 
best predicted using data until the end of July, spring temperature predictions were 
only tested with systems using data available up to the end of July (rather than only 
using earlier data).  SST1&2 gave the highest LEPS scores for spring mean 
temperature, though SOI and SST1 also performed fairly well (Table 12). 

Table 12: Spring mean temperature: Number of positive LEPS scores obtained. A 
maximum of four is possible in each of the grid cells. The number of LEPS scores greater 
than 10 are given in brackets. 

Station Name SST1 SST2 SST1&2 SOI 
Mingenew 4 (0) 0 (0) 3 (0) 4 (0) 
Jarrahdale 4 (4) 4 (4) 4 (4) 4 (2) 
Lake Grace 4 (0) 2 (0) 4 (0) 4 (0) 
Merredin 4 (3) 4 (0) 4 (4) 4 (4) 
Manjimup 4 (0) 4 (0) 4 (0) 4 (4) 
Kalgoorlie 4 (0) 4 (0) 4 (0) 4 (0) 

 
The SOI was the ‘best’ predictor of spring mean maximum temperature (Table 13), 
though no method worked particularly well for Manjimup. SST2 was the clearly the 
worst potential predictor of spring mean maximum temperature. No methods worked 
particularly well for Manjimup. 
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Table 13: Spring mean maximum temperature: Number of positive LEPS scores 
obtained. A maximum of four is possible in each of the grid cells. The number of LEPS scores 
greater than 10 are given in brackets. 

Station Name SST1 SST2 SST1&2 SOI 
Mingenew 4 (0) 0 (0) 4 (0) 4 (0) 
Jarrahdale 4 (2) 1 (0) 3 (1) 4 (2) 
Lake Grace 4 (0) 0 (0) 4 (0) 4 (1) 
Merredin 4 (2) 0 (0) 4 (0) 4 (3) 
Manjimup 1 (0) 0 (0) 0 (0) 1 (0) 
Kalgoorlie 2 (0) 2 (0) 2 (0) 4 (0) 

 
The most consistently skilful system, over all stations, of spring mean minimum 
temperature (Table 14) used both SST 1&2, however SST1, SST2, and the SOI also 
performed relatively well for most stations. The LEPS scores associated with 
prediction of mean minimum temperature were generally higher than those for mean 
spring temperature, and much greater than those for mean maximum temperature. The 
results of using differenced spring mean minimum temperatures are in Table 15. 
When differenced data were used the resulting LEPS scores were considerably lower 
than for the raw data (except for Mingenew using SST2). This is particularly evident 
when using SST1 or SST1&2.  

Table 14: Spring mean minimum temperature: Number of positive LEPS scores 
obtained. A maximum of four is possible in each of the grid cells. The number of LEPS scores 
greater than 10 are given in brackets. 

Station Name SST1 SST2 SST1&2 SOI 
Mingenew 4 (0) 0 (0) 4 (0) 4 (0) 
Jarrahdale 4 (0) 4 (4) 4 (4) 4 (1) 
Lake Grace 4 (0) 4 (4) 4 (4) 4 (1) 
Merredin 4 (0) 4 (4) 4 (4) 4 (4) 
Manjimup 4 (4) 4 (0) 4 (4) 4 (4) 
Kalgoorlie 4 (0) 4 (0) 4 (0) 4 (0) 

 

Table 15: Spring mean minimum temperature: Number of positive LEPS scores 
obtained for first differenced data. A maximum of four is possible in each of the grid cells.  

Station Name SST1 SST2 SST1&2 SOI 
Mingenew 2 4 3 3 
Jarrahdale 0 2 0 2 
Lake Grace 0 3 1 4 
Merredin 0 4 3 4 
Manjimup 0 4 3 4 
Kalgoorlie 0 4 2 2 

 
 
Summer (December to February) 
Rainfall 
A similar analysis was carried out for summer (December to February) rainfall.  Here 
September, July and September, averaged July to September (JAS), and averaged 
May to July (MJJ) and JAS SST and SOI data were used to forecast the rainfall.  The 
results for the raw data are given in Table 16 and for the first differenced data in Table 
17. 
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From Table 16 it is clear that the SST forecast system tends to perform better than the 
SOI based system for summer rainfall. Comparing Tables 4, 6, 10 and 16 it is also 
apparent that forecasts of summer rainfall have generally higher LEPS scores than 
those for winter and spring, with a number of LEPS scores over 10. There are now 
four combinations of predictors that give positive LEPS scores for all six stations: 
September SSTs 1 and 2; JAS SSTs 1 and 2; MJJ and JAS SST1 only; and MJJ and 
JAS SSTs 1 and 2. 
 
When the differenced data were used the LEPS scores were greatly reduced with no 
LEPS scores over 8 and many negative scores (Table 17).  No set of (differenced) 
predictors gave positive LEPS scores for all six stations. 

Table 16: Summer rainfall: Number of positive LEPS scores obtained. A maximum of 
four is possible in each of the grid cells.  The number of LEPS scores greater than 10 are 
given in brackets. 

Station Name SST1 SST2 SST1&2 SOI 
Mingenew 4 (0) 4 (0) 4 (4) 2 (0) 
Jarrahdale 4 (0) 4 (0) 4 (0) 1 (0) 
Lake Grace 4 (3) 0 (0) 4 (3) 4 (0) 
Merredin 3 (0) 4 (0) 4 (3) 0 (0) 
Manjimup 1 (0) 4 (0) 3 (0) 0 (0) 
Kalgoorlie 4 (0) 1 (0) 4 (0) 1 (0) 

Table 17: Summer rainfall: Number of positive LEPS scores obtained for first 
differenced data. A maximum of four is possible in each of the grid cells, except for SST1&2 
where only three combinations were possible. There were no LEPS scores over 10. 

Station Name SST1 SST2 SST1&2 SOI 
Mingenew 0 2 1 0 
Jarrahdale 0 1 0 2 
Lake Grace 1 0 0 0 
Merredin 0 1 0 1 
Manjimup 0 2 1 1 
Kalgoorlie 0 1 0 1 

 
Mean Maximum Temperature 
Using the same set of predictors as for summer rainfall the average maximum summer 
(DJF) temperature was forecast and the skill assessed using LEPS scores. The results 
are given in Table 18 (raw data) and Table 19 (differenced data).  

Table 18: Summer mean maximum temperature: Number of positive LEPS scores 
obtained. A maximum of four is possible in each of the grid cells. The number of LEPS scores 
greater than 10 are given in brackets. 

Station Name SST1 SST2 SST1&2 SOI 
Mingenew 1 (0) 2 (0) 3 (0) 2 (0) 
Jarrahdale 4 (1) 0 (0) 3 (1) 2 (0) 
Lake Grace 4 (0) 2 (0) 4 (0) 3 (0) 
Merredin 4 (0) 0 (0) 4 (0) 4 (0) 
Manjimup 1 (0) 4 (1) 4 (2) 0 (0) 
Kalgoorlie 2 (0) 0 (0) 0 (0) 1 (0) 

 
Only one set of predictors gave positive LEPS scores for all stations: JAS SST 1 only, 
though all the LEPS scores were less than 5. When differenced the SST forecast 
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schemes generally gave lower LEPS scores than the SOI based schemes. The only 
differenced scheme to give positive LEPS scores at all six stations (one over 10) was 
MJJ and JAS SOI. 

Table 19: Summer mean maximum temperature: Number of positive LEPS scores 
obtained for first differenced data. A maximum of four is possible in each of the grid cells, 
except for SST1&2 where only three combinations were possible.  

Station Name SST1 SST2 SST1&2 SOI 
Mingenew 1 2 0 1 
Jarrahdale 0 0 0 2 
Lake Grace 0 0 0 1 
Merredin 0 2 0 3 
Manjimup 0 0 0 4 (2) 
Kalgoorlie 0 2 1 2 

 
Number of days over 35°C 
Forecasts of the number of days over 35°C were made using the same predictors as 
for summer rainfall. The results are given in Table 20. Merredin and Manjimup are 
the ‘best’ forecast stations with positive LEPS scores regardless of the predictors 
used. The only predictor to give positive LEPS scores for all six stations was JAS 
SST1. 

Table 20: Number of days over 35°C: Number of positive LEPS scores obtained. A 
maximum of four is possible in each of the grid cells. The number of LEPS scores greater 
than 10 are given in brackets. 

Station Name SST1 SST2 SST1&2 SOI 
Mingenew 4  0  4  2  
Jarrahdale 2  0  2  2  
Lake Grace 2  0  0  1  
Merredin 4  4  4  4  
Manjimup 4  4  4 (2) 4  
Kalgoorlie 2  0  0  4  

 
Number of days over 40°C 
Forecasts of the number of days over 40°C were made using the same predictors as 
for summer rainfall (Table 21). No forecasts were possible for Jarrahdale and Lake 
Grace. Only Kalgoorlie (using SSTs 1 and 2) had LEPS scores over 10. Except for 
Kalgoorlie, the LEPS scores for forecasts of the number of days over 40°C were 
generally lower than for forecasts of the number of days over 35°C. 

Table 21: Number of days over 40°C: Number of positive LEPS scores obtained. A 
maximum of four is possible in each of the grid cells. The number of LEPS scores greater 
than 10 are given in brackets. 

Station Name SST1 SST2 SST1&2 SOI 
Mingenew 1 0 0 2 
Merredin 0 1 0 0 
Manjimup 1 3 1 0 
Kalgoorlie 4 2 4 (2) 4 
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Summary 
 
Overall the results presented above are mixed.   
 
There does appear to be some skill in predicting summer rainfall, summer mean 
maximum temperature, and extreme temperature events (such as the number of days 
over 35°C).  In general, for the raw data, predictions using SST1 only or SST1 and 
SST2 together tended to give more consistently positive LEPS scores than those using 
SST2 only or the SOI.  However, when the original data were differenced the SOI and 
SST2 only tended to give better results. 
 
For winter rainfall, the LEPS scores tended to be lower than for summer rainfall and 
temperature forecasts. There were mixed results with forecasts for Mingenew showing 
some skill both in the raw and differenced data. The stations selected in this analysis 
differ in their yearly rainfall distributions with Mingenew and Kalgoorlie having less 
peaked winter rainfall maxima. This may mean that different predictors could be 
needed for Mingenew and Kalgoorlie than for the other stations. 
 
The skill obtainable for spring rainfall predictions lies between that of summer and 
winter rainfall. In order of increasing overall skill, the spring predictions were rainfall, 
mean maximum temperature, mean temperature and mean minimum temperature, 
with the temperature forecasts tending to have considerably greater skill than the 
rainfall forecasts. There appears to be some skill in predicting spring temperatures, 
and to some extent rainfall, using data up to the end of July. 
 
A few representative illustrations of the strength of the better relationships are shown 
in Figures 2-5. The degree to which the symbols for the three terciles are separated in 
the figures indicates the strength of the predictive relationships.  
 
The first example (Figure 2) shows the prediction of September-November rainfall 
using May-July values of the SST predictors. This example has a moderate LEPS 
score and there is considerable separation of the tercile symbols, suggesting a 
potentially useful level of skill. 
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Figure 2: Lake Grace September-November rainfall versus May-July SST patterns 

 21



Climate Variability and predictability 
 for southwest Western Australia 

 
Figure 3 illustrates that summer rainfall exhibits some predictability, with most wet 
summers at Manjimup being preceded by negative values of SST1 in July-September, 
i.e., La Niña episodes. One of the higher values of LEPS scores, 21.6, is illustrated in 
Figure 4, which shows that September-November mean minimum temperature at 
Jarrahdale appears to be strongly related to values of the SST patterns in May-July. 
Finally, extreme summer temperatures, as measured by the number of days with 
maximum temperatures exceeding 35ºC at Lake Grace, seem to be predictable using 
July-September SST patterns (Figure 5).  
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Figure 3: Manjimup summer rainfall versus July-September SST1 
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Figure 4: Jarrahdale September-November mean minimum temperature versus SST1 
& SST2 in May-July 
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Figure 5: Number of days at Lake Grace in December-February with maximum 
temperatures exceeding 35C, versus SST patterns in July-September 
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Sea Surface Temperature Gradients and Prediction 
 
Some preliminary work suggested that SST gradients in the Indian Ocean might be of 
use in predicting SWWA rainfall, especially during winter (May-October). A 
comprehensive study of this possibility was undertaken, in an attempt to determine if 
other SST predictors other than SST1 and SST2 could provide useful predictive 
information. 

Rainfall and Temperature Data 

May to October rainfall totals and averaged May to October temperature data were 
available for Mingenew, Jarrahdale, Manjimup, Merredin, Lake Grace and 
Kalgoorlie. 

SST Data 
We used 2-degree reconstructed near-global SST (NCEP) data from the period 1950 
to 1998.  This data was then averaged to produce a 4° x 4° gridded data set, covering 
latitudes 44° S to 68° N.  Temperature gradients were obtained by calculating the 
latitudinal change in temperature from one grid box to the next. 
 

 

Figure 6. Averaged May to October SST gradients (1950 to 1998).  The red box shows 
the location of the 9 gradient boxes (each 4° latitude x 4° longitude) mentioned in the text. 

Correlations of SST Gradients with SW Rainfall 

A group of nine SST gradient grid boxes, covering the region 29° to 41° S and 104° to 
116° E, were selected as potential SWWA rainfall and temperature predictors (see 
Figure 6). The selection of these boxes was based on unpublished work by Dr. D. A. 
Jones who found that an SST gradient box within this region was highly correlated 
with winter rainfall at Manjimup during the period 1982 to 1994. The relationship was 
less strong when longer time periods were used, indicating a possible change in the 
relationship between rainfall and SST gradients in the SWWA area may have 
occurred sometime prior to 1982. 
 
When a similar analysis was carried out using the SST gradients described above, two 
of the nine SST gradient boxes indicated possible predictive skill for Manjimup 
winter rainfall, particularly when only using more recent years.  Table 22 lists the 
correlations (and significance levels) for two of the gradient boxes.  Table 22 
indicates that a change in the relationship between the SST gradients and Manjimup 
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rainfall most likely occurred prior to 1965.  The relationship is shown graphically in 
Figure 7. 
 

Table 22. Simultaneous correlation of SST gradient boxes with Manjimup May to October 
rainfall.  Box 3 is centred on 106°E, 31°S and Box 8 on 114°E, 35°S.  The p-values for the 
correlation coefficients are given in brackets. 

Period Box 3 Box 8 

1950-1998 0.148 (0.311) 0.050 (0.736) 

1965-1998 0.429 (0.011) 0.377 (0.028) 

1982-1998 0.812 (0.000) 0.583 (0.018) 

100

200

300

400

500

600

1950 1960 1970 1980 1990 2000

Year

M
an

jim
up

 R
ai

nf
al

l (
m

m
)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

 
G

ra
di

en
t B

ox
 3

Figure 7. Graphical illustration of the relationship between SST gradient in Box 3 and 
Manjimup May to October rainfall. 

Rainfall Tercile Prediction Using SST Gradients 
When the full data set (1950 to 1998) is used to assess the potential to predict May to 
October rainfall from SST Gradients no significant skill is obtained. 
 
If data from the period 1965 to 1998 only is used, marginally skilful rainfall 
predictions were possible for Manjimup using a single months SST gradient (Box 3; 
from February to May) with slight increases in skill achievable if three month 
averaged SST gradients are used (see Table 23).  No significant skill was achieved for 
the other five rainfall stations. 
 
Although the number of years in the period 1982 to 1998 is relatively small, the skill 
of rainfall predictions, using SST gradients for Boxes 3 and 8 was assessed with the 
results given in Tables 24 and 25.  For brevity only the results for the single month 
gradients are given with generally no improvement in skill being obtained using three-
month average gradients. 
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Table 23. LEPS skill scores for prediction of Manjimup May to October rainfall using Box 3 
(centred on 106°E, 31°S) SST gradients.  Data used is 1965 to 1998. 

Gradient 
Month 

LEPS Score Gradient Months LEPS Score 

Jan -1.21 11-1 3.54 

Feb 4.01 12-2 4.95 

Mar 1.28 1-3 4.30 

Apr 5.43 2-4 8.11 

May 3.19 3-5 6.23 
 
Gradient Box 3 appears to provide the best predictions of May to October rainfall, 
particularly for Manjimup, with some moderate skill at Mingenew, Jarrahdale and 
Lake Grace in April and May.  Forecasts using May gradient values however, are of 
little use as there is no lead-time. 

Table 24. LEPS skill scores for the prediction of May to October rainfall using Box 3 (centred 
on 106°E, 31°S) SST gradients.  Data used is 1982 to 1998. 

Gradient 
Month 

Mingenew Jarrahdale Manjimup Merredin Lake 
Grace 

Kalgoorlie

Jan -5.53 -5.92 -7.20 7.23 1.87 2.52 

Feb -6.40 -6.73 4.19 -4.89 -5.95 -7.99 

Mar 2.16 -4.75 4.49 3.81 -2.73 -6.89 

Apr 6.21 4.96 18.65 -1.07 2.14 -2.76 

May 4.64 12.53 19.68 -6.56 15.42 -7.58 

Table 25. LEPS skill scores for the prediction of May to October rainfall using Box 8 (centred 
on 114°E, 35°S) SST gradients.  Data used is 1982 to 1998. 

Gradient 
Month 

Mingenew Jarrahdale Manjimu
p 

Merredin Lake 
Grace 

Kalgoorlie 

Jan -5.00 -6.44 -6.64 -4.08 -3.85 -6.18 

Feb -7.18 -4.11 -2.85 -4.76 -6.84 -2.99 

Mar -7.28 -4.02 -4.08 8.72 16.23 -3.41 

Apr -0.69 -3.32 5.20 -5.72 -4.38 -3.62 

May -0.99 -1.63 6.28 -2.92 -7.39 -7.76 

Temperature Tercile Prediction Using SST Gradients 
As for rainfall the potential predictability of temperature variables using SST 
gradients was first tested using the full data set (1950 to 1998).  Simultaneous 
correlations for two of the nine SST gradient boxes are given in Table 26.  Gradient 
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Box 3 generally gave the highest correlation values with significant correlations for 
all six temperature stations.  Gradient Box 9 (results not shown) had significant 
correlations with all six temperature stations, however the values were generally 
lower than those for Box 3. As an example, the relationship between SST gradient 
Box 3 and Lake Grace May to October mean temperature is graphically illustrated in 
Figure 8. 
 

Table 26. Simultaneous correlation of SST gradient boxes with station May to October mean 
temperature (1950 – 1998).  Box 3 is centred on 106°E, 31°S and Box 8 on 114°E, 35°S.  The 
p-values for the correlation coefficients are given in brackets. 

Station Box 3 Box 8 

Mingenew 0.385 (0.006) 0.266 (0.065) 

Jarrahdale 0.487 (0.000) 0.371 (0.009) 

Manjimup 0.375 (0.008) 0.197 (0.175) 

Merredin 0.467 (0.001) 0.342 (0.016) 

Lake Grace 0.467 (0.001) 0.281 (0.050) 

Kalgoorlie 0.501 (0.000) 0.306 (0.032) 
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Figure 8. May to October Lake Grace mean temperature and May to October SST 
gradient Box 3. 
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Table 27. LEPS skill scores for the prediction of May to October mean temperature, using 
SST gradient Box 3.  Data used is 1950 to 1998.  Similar results were obtained when using 
three-month averaged SST gradients. 

Gradient 
Month 

Mingenew Jarrahdale Manjimup Merredin Lake 
Grace 

Kalgoorlie 

Jan -2.00 -1.63 -2.17 -1.99 -1.99 0.31 

Feb -1.83 -2.00 -1.34 0.28 -1.21 -1.42 

Mar 5.38 1.66 0.77 0.67 2.53 2.03 

Apr 2.04 2.01 -0.98 4.55 0.95 1.27 

May 4.62 0.90 -1.44 0.43 -1.88 3.70 

Although generally high correlation values were found for simultaneous May to 
October mean temperature and SST gradient Box 3 the predictive ability of SST 
gradient Box 3 was not high (Table 27). Unlike the case with rainfall (see Figure 3) 
there were no obvious changes in the relationship between the SST gradients and 
mean temperature (see Figure 8).  Therefore analyses were not carried out for shorter 
time periods. 

 

Summary 
Overall, the results of these tests of the use of SST gradients in winter prediction were 
somewhat disappointing. There was little evidence that the gradients could produce 
useful temperature forecasts. There was some evidence that winter rainfall predictions 
might be possible. However, this was only so using recent data – the earlier data 
showed no predictive relationship. This may suggest that earlier data were of poor 
quality. Retesting with future data will be required to confirm whether the recent 
predictability is real. 

 

Wheat yield predictability 
 
The most disappointing result from the above studies was the low skill apparently 
achievable for predicting winter rainfall, using either the SOI or SST patterns. Winter 
rainfall is clearly of importance for agricultural purposes, so it appears that the 
chances of forecasting crop yields are low. Nevertheless, a preliminary examination of 
the predictability of wheat yields was undertaken, for the shire of Yilgarn. 
 

Data 
A long term data set of shire-level wheat yields for the shire of Yilgarn (of which 
Southern Cross is a major town) was provided by D. Stephens of Agriculture Western 
Australia. These data were based on Australian Bureau of Statistics (ABS) census data 
from 1930 to 1996 and a sample survey (not a full census) for 1997. This data set had 
not been adjusted for advances in farming techniques so a simple linear regression 
against year was used to adjust the yields over the period 1950 to 1997. The raw and 
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adjusted yields are shown in Figure 9. The period 1950 to 1997 was chosen as it 
overlaps with the other data sets mentioned below. 
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Figure 9. Raw and adjusted wheat yields for Yilgarn shire, 1950 to 1997. 

High-quality monthly rainfall data were available from Kalgoorlie to the east of 
Southern Cross, and from Merredin to the west of Southern Cross. The period of 
rainfall records used in this study was 1949 to 1997. Monthly temperature data (mean 
minimum, mean maximum and diurnal temperature range or DTR) were also 
available at Merredin and Kalgoorlie. 
 
Method 
 
A statistical forecast scheme, similar to that used above for prediction of rainfall and 
temperature, was adopted for wheat yield prediction. Lagged values of the predictor 
variables time series (rainfall at Kalgoorlie, SST time score series, SOI) are used to 
forecast the probability of the wheat yield in pre-defined categories. In this study 
predictions were made for both wheat yield terciles (three equally probable 
categories) and medians (two equally probable categories). 

Results 

Table 28 lists the skill scores for tercile forecasts of wheat yield. Only months one to 
ten (January to October) are used to forecast the yield. It is evident from Table 1 that 
skilful prediction of wheat yield using SST1, SST2, SST1 and SST2 or the SOI is 
unlikely. A similar analysis using 3-month averaged SST and SOI values, with the 
average ending in month m, was also conducted but resulted in skill scores similar to 
those in Table 28. 
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Table 28. LEPS skill scores for wheat yields (terciles).  The predictor month used to forecast 
the yield is given in brackets.  For example, the first row of data is for January (m=1) and 
predictors using (m, m-2) use January and November (of the previous year). 

Month SST1(m) SST2(m) SST1&2(m) SST1(m,m-2) SST2(m,m-2) SST1&2(m,m-2) SOI(m) SOI(m,m-2) 

1 -2.05 -2.80 -5.02 -2.10 -3.81 -6.79 -2.51 -4.04 

2 -1.23 -0.79 -2.19 -0.80 -2.36 -3.19 -2.45 -4.76 

3 -0.16 1.45 1.01 -1.42 1.81 0.40 -1.52 -3.86 

4 -0.98 -1.91 -2.92 -3.11 -2.79 -6.88 -1.16 -3.30 

5 -1.40 -2.05 -3.25 -2.01 0.04 -2.24 -1.43 -2.64 

6 -1.15 -1.97 -2.54 -3.50 -3.89 -7.10 -0.98 -3.38 

7 0.26 -1.28 0.61 1.68 -2.71 -0.24 2.49 5.02 

8 -0.82 1.68 1.88 -2.42 2.99 2.26 -1.43 -1.97 

9 -2.00 -1.32 -2.64 0.88 -3.83 -0.09 0.25 0.78 

10 -2.17 0.05 -1.66 2.69 -0.62 0.72 -1.62 -0.98 

 
The skill scores for above and below median wheat yield forecasts are given in Table 
29. When forecasting two categories of wheat yield there is more skill, in most 
months, than when forecasting for three categories. However the most skilful 
predictions are very late in the year (August and October) making their usefulness to 
wheat producers limited. Again, the analysis using three-month averaged SST and 
SOI values gave similar results, though no months had skill scores over 10. A subset 
of these results is illustrated graphically in Figure 10. 
 

Table 29. LEPS skill scores for wheat yields (above/below median).  The predictor month 
used to forecast the yield is given in brackets.  For example, the first row of data is for 
January (m=1) and predictors using (m, m-2) use January and November (of the previous 
year). 

Month SST1(m) SST2(m) SST1&2(m) SST1(m,m-2) SST2(m,m-2) SST1&2(m,m-2) SOI(m) SOI(m,m-2) 

1 -1.61 -2.27 -3.95 0.62 -4.48 -3.66 -0.81 -3.05 

2 -0.77 -1.70 -2.48 -2.40 -3.92 -6.77 -1.85 -3.51 

3 -1.76 1.82 0.42 -3.86 3.82 2.04 -2.21 -2.46 

4 -1.74 -1.63 -3.42 -2.55 -3.90 -5.95 -2.18 -4.03 

5 -1.76 2.23 -3.25 0.10 0.43 2.40 -2.19 -4.49 

6 -1.94 -0.32 -2.38 -0.24 -2.46 -1.41 -1.53 -3.48 

7 -2.08 2.93 0.84 -1.58 0.84 -1.95 3.28 5.10 

8 -2.18 11.07 8.87 -4.13 13.44 10.11 2.33 0.59 

9 -1.73 5.89 3.96 0.06 3.78 5.34 5.05 3.09 

10 0.13 2.45 2.05 5.45 9.66 10.47 -2.12 3.97 
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Figure 10. LEPS skill scores for forecasts of median wheat yield at Yilgarn by month.  
SST1O_2 uses SST1 in month m; SST2O_2 uses SST2 in month m; SST12O_2 uses SST1 
and SST2 in month m; SOI_2 uses the SOI in month m; SST1OA3_2 uses three-month 
averaged SST1 values ending in month m; SST2OA3_2 uses three-month averaged SST2 
values ending in month m; SST12OA3_2 used SST1 and SST2 three-month averaged 
values ending in month m; and SOIA3_2 uses three-month averaged SOI values ending in 
month m. 

 
Table 30 lists the results for forecasts of tercile Yilgarn wheat yields using rainfall 
from Kalgoorlie and Merredin. The results for above/below median forecasts were 
similar. Forecasts using rainfall (either from Kalgoorlie or from Merredin) tend to 
have higher skill scores than those made using the SSTs or the SOI. In particular, 
when rainfall is used as a predictor skilful forecasts appear to be possible as early as 
April. The results from Table 30 are shown graphically in Figure 11. 
 

Table 30. LEPS skill scores for Yilgarn wheat yields (terciles) using Kalgoorlie or Merredin 
rainfall.  The predictor month used to forecast the yield is given in brackets.  For example, 
the first row of data is for January (m=1) and predictors using (m, m-2) use January and 
November (of the previous year).  Kal = Kalgoorlie, Mer = Merredin. 

Month Kal (m) Mer (m) Kal (m,m-2) Mer (m,m-2) Kal (3m) Mer 

(3m) 

Kal 

(3m,3m-1) 

Mer 

(3m,3m-1) 

1 -1.74 1.77 -3.72 3.20 -0.56 -1.15 -0.97 2.57 

2 5.87 1.27 5.68 1.94 4.23 4.48 2.69 4.16 

3 12.05 -1.27 10.58 0.73 10.92 2.30 12.69 0.45 

4 30.29 12.73 31.21 12.21 22.21 8.97 23.66 8.95 

5 -0.39 1.99 11.10 0.44 27.10 9.29 28.92 9.43 

6 3.00 2.35 30.42 15.04 18.63 13.89 35.43 17.97 

7 6.86 15.26 6.19 15.51 9.88 17.78 26.54 17.44 

8 3.02 4.00 5.34 6.35 13.82 25.70 19.11 27.40 

9 4.57 3.09 11.36 15.46 15.24 24.76 19.45 33.61 

10 -1.21 -1.21 0.87 3.85 5.69 7.94 14.78 27.25 

 31



Climate Variability and predictability 
 for southwest Western Australia 

-5

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10

Month

LE
PS

 S
ki

ll 
Sc

or
e

KalgoorlieO_3
KalgoorlieL_3
KalgoorlieA3_3
KalgoorlieLA3_3
MerredinO_3
MerredinL_3
MerredinA3_3
MerredinLA3_3

 

Figure 11. LEPS skill scores for forecasts of median wheat yield at Yilgarn by month 
using rainfall at Kalgoorlie or Merredin as predictors. The legend is as in Figure 6. 

Table 31 lists the results for forecasts of tercile Yilgarn wheat yields using mean 
minimum monthly temperatures at Kalgoorlie and Merredin. Although not shown, the 
results for above/below median forecasts gave generally higher skill levels than for 
terciles, for example above/below median yield forecasts using Kalgoorlie (m,m-2) 
minimum temperatures had skill scores ranging from 4.47 to 14.85 when m was 
between 7 and 10. However, forecasts this late in the year are unlikely to provide 
useful information to farmers.  

Table 31. LEPS skill scores for Yilgarn wheat yields (terciles) using Kalgoorlie or Merredin 
monthly mean minimum temperatures.  The predictor month used to forecast the yield is 
given in brackets. For example, the first row of data is for January (m=1) and predictors 
using (m, m-2) use January and November (of the previous year). Kal = Kalgoorlie, Mer = 
Merredin. 

Month Kal (m) Mer (m) Kal (m,m-2) Mer (m,m-2) Kal (3m) Mer 

(3m) 

Kal 

(3m,3m-1) 

Mer 

(3m,3m-1) 

1 -0.38 -2.16 -2.18 -3.38 -2.22 -2.10 -0.20 -4.00 

2 -2.15 -2.05 -4.77 -4.50 -2.56 -2.27 -2.98 -3.61 

3 -2.34 -1.88 -2.23 -4.07 -2.36 -2.17 -4.73 -4.10 

4 1.00 -0.02 -0.90 -2.60 -0.14 -0.71 -2.07 -3.33 

5 0.00 -1.82 -2.02 -3.44 0.13 -1.41 -1.32 -3.44 

6 -1.48 -2.09 -0.49 -2.16 1.41 -1.56 0.02 -2.76 

7 3.91 1.31 3.36 -0.10 3.11 -1.24 1.22 -3.00 

8 1.63 -0.56 0.04 -2.45 -1.85 -2.17 -0.31 -2.77 

9 1.11 1.34 4.49 3.74 -1.77 -1.73 4.51 -0.99 

10 -0.10 1.56 0.31 0.01 2.87 2.53 3.27 4.14 

 
Table 32 lists the results for forecasts of tercile Yilgarn wheat yields using mean 
maximum monthly temperatures at Kalgoorlie and Merredin. Potentially useful skill 
levels were achieved when using three-month averages of maximum monthly 
temperatures for both Merredin and Kalgoorlie. The skill levels were generally greater 
in the latter months (after May). Mean monthly maximum temperatures at Kalgoorlie 
(three month average no lags) tended to provide more consistently high skill levels 
than the other combinations presented in Table 32. 
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Table 32. LEPS skill scores for Yilgarn wheat yields (terciles) using Kalgoorlie or Merredin 
monthly mean maximum temperatures. The predictor month used to forecast the yield is 
given in brackets. For example, the first row of data is for January (m=1) and predictors 
using (m, m-2) use January and November (of the previous year). Kal = Kalgoorlie, Mer = 
Merredin. 

Month Kal (m) Mer (m) Kal (m,m-2) Mer (m,m-2) Kal (3m) Mer 

(3m) 

Kal 

(3m,3m-1) 

Mer 

(3m,3m-1) 

1 5.14 -0.24 3.96 -1.82 1.89 -0.35 6.08 0.39 

2 -2.63 -1.54 -4.63 -3.89 -0.35 -0.04 -0.99 -0.48 

3 5.75 6.65 7.24 4.71 3.53 4.91 2.98 2.57 

4 8.75 2.98 7.02 0.50 7.08 6.68 5.82 5.03 

5 3.65 3.90 7.17 6.30 13.88 9.10 11.49 7.07 

6 6.60 4.61 12.67 5.42 13.49 8.64 12.36 7.01 

7 6.21 9.20 8.17 9.82 10.31 10.97 14.43 10.53 

8 5.20 5.46 8.06 7.30 11.32 11.98 15.63 11.54 

9 6.09 13.69 11.49 20.27 12.82 18.63 12.50 17.41 

10 -1.96 0.68 3.07 4.86 5.90 11.70 10.28 14.21 

 
Table 33 lists the results for forecasts of tercile Yilgarn wheat yields using the 
monthly diurnal temperature range at Kalgoorlie and Merredin.  Higher overall skill 
was achieved when using the DTR over mean minimum, mean maximum 
temperatures, SSTs or the SOI, with useful skill levels appearing as early as 
March/April.  The results from Table 33 are shown graphically in Figure 12.  Similar 
skill levels were obtained when forecasting above/below median wheat yields. 
 

Table 33. LEPS skill scores for Yilgarn wheat yields (terciles) using Kalgoorlie or Merredin 
monthly diurnal temperature range. The predictor month used to forecast the yield is given 
in brackets. For example, the first row of data is for January (m=1) and predictors using (m, 
m-2) use January and November (of the previous year). Kal = Kalgoorlie, Mer = Merredin.  
“-“ indicates no LEPS score available. 

Month Kal (m) Mer (m) Kal (m,m-2) Mer (m,m-2) Kal (3m) Mer 

(3m) 

Kal 

(3m,3m-1) 

Mer 

(3m,3m-1) 

1 3.49 -0.91 - - 2.37 0.86 3.11 1.64 

2 -1.77 0.57 - - 1.76 2.05 0.18 1.24 

3 12.71 10.73 12.18 9.10 7.17 5.59 - - 

4 29.45 14.66 28.11 12.57 16.73 10.92 - - 

5 7.42 4.31 16.13 11.46 27.68 18.38 25.70 16.44 

6 7.03 3.97 30.13 15.69 27.90 19.79 29.37 19.64 

7 12.50 12.82 15.99 14.17 20.61 16.55 29.42 21.63 

8 -0.85 -0.99 6.61 3.41 14.79 10.85 27.86 20.00 

9 4.46 7.13 14.79 17.09 12.35 11.44 20.04 18.46 

10 -2.28 -2.45 -3.30 -3.56 0.68 1.46 12.83 9.39 
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Figure 12. LEPS skill scores for forecasts of median wheat yield at Yilgarn by month 
using the DTR at Kalgoorlie or Merredin as predictors.  The legend is as in Figure 10. 

Discussion 

Skilful prediction of wheat yield at Yilgarn appears possible using monthly rainfall 
values from Kalgoorlie or the diurnal temperature range at Merredin or Kalgoorlie, 
from as early as March. However, caution in interpreting these results is needed as 
high levels of skill around the time of planting may simply be a reflection of farming 
practices under prevailing rainfall and temperature regimes. 
 
An illustration of the skill obtainable in this way is shown in Figure 13, where 
detrended yield is plotted against April Kalgoorlie rainfall. The separation of high 
yield and low yield years is quite clear. 
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Figure 13: Wheat yield at Yilgarn (detrended) versus April rainfall at Kalgoorlie 
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Antarctic Circumpolar Wave (ACW) 

Description.  
 
The Antarctic Circumpolar Wave (ACW), first documented by White and Peterson 
(1996) is a large scale anomaly pattern in sea surface temperature (SST), sea level 
pressure (SLP) and associated wind fields.  It is found in the Southern Ocean between 
approximately 40oS and the Antarctic coast, and consists of a wave number two 
pattern (i.e. two positive and two negative anomaly regions around a latitude circle). 
This pattern propagates eastward at about 45o longitude per year, resulting in a four 
year period at any point. The structure of the ACW is revealed in an EOF analysis of 
monthly SST anomalies over the Southern Ocean (25S to 65S), in Figure 14. The first 
two EOFs are in quadrature, ie they have the same basic spatial structure, but 
displaced by one half a wavelength, so that maxima or minima in one pattern coincide 
with nodal (zero) lines in the other. The principal components (EOF time series) are 
uncorrelated at zero lag, but strongly correlated at approximately 12 months lag, 
implying a 4-year periodicity in the evolution of the pattern.  
 

 

Figure 14. Spatial patterns and time series of first two EOFs of Southern Ocean (25S to 
70S) monthly Sea Surface Temperature anomalies for period from January 1982 to April 
1999.  Contour interval 0.2, with zero contour heavy. Positive loadings shaded red, 
negative blue. 

 
The propagating character of the ACW can also be seen in a Hovmoller (time - 
longitude) plot of SST and SLP anomalies along a latitude band (eg 50-60S, figure 
15). Alternatively, the evolution of the EOF patterns can be tracked on a phase plot of 
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the two principal components (figure 16). As the wave propagates eastward, the 
observed SST anomaly pattern should project strongly onto a sequence  
... +PC1              +PC2                 -PC1                -PC2               +PC1… 
Predictability of the ACW is largely based on the persistence of this approximately 4-
year cycle. 

 

Figure 15. Hovmoller (time - longitude) plots of (a) SST anomalies and (b) MSLP 
anomalies for period Jan 1982 to Dec 1998, averaged over a 10 degree latitude band form 
50S to 60S. Data is 2-7 year band pass filtered and has zonal mean removed. 

 
Relations to the El Niño - Southern Oscillation and the Indian Ocean Dipole 
 
Peterson and White (1998) suggest that ACW has a source region in the subtropical 
southwest Pacific, which in turn is driven by equatorial ENSO related anomalies. SST 
and SLP anomalies propagate from this region into the Southern Ocean. The extent of 
the ENSO / ACW connection is simply shown by the lagged cross-correlation 
between the SOI and the principal component time series (Figure 17) The two PCs are 
themselves uncorrelated at zero lag (as required by the EOF analysis), but are 
significantly correlated (-0.65) with PC1 lagging PC2 by approximately 12 months. 
The reverse correlation (PC1 leading PC2) is not as strong (+0.30), suggesting that the 
evolution of some parts of the nominal four year cycle are more reliable than others. 
This is also evident in the PC1 - PC2 phase plot (Figure 16) which suggests that the 
transition from +PC1 to +PC2 is not as robust as the rest of the cycle, which then 
“begins” with +PC2. This view is consistent with the hypothesis of Peterson and 
White (1998), since +PC2 has significant warm anomalies in the Tasman Sea region. 
These appear to propagate to the southeast, surrounding New Zealand in -PC1 and 
then to the southeast of New Zealand in -PC2. Both PCs have significant lagged 
correlations with the SOI, also only in one direction for each PC. PC1 lags the SOI by 
3-6 months, while PC2 leads SOI by 6 months. The second EOF pattern has positive 
loadings in the Indian Ocean southwest of Western Australia, in a similar region to the 
maximum loadings on SST2 defined by Drosdowsky and Chambers (1998). The times 
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series of these components are also significantly positively correlated (+0.58) at a lag 
of two months. This suggests that subtropical (20S to 35S) Indian Ocean SST 
anomalies may also be linked to the ACW. 
  
 

 

Figure 16. Phase plot of EOF amplitudes PC1 and PC2 for period Jan 1982 to May 
2000. Each year is plotted at mid-year (June) point, and colour of trajectory changes each 
year. Light purple boundaries and numbers 1-5 refer to categories or phases used in 
Figure 5. Both time series are lightly smoothed with a 1-2-1 filter before plotting. 

 
Effect of the ACW on Australian rainfall. 
 
The ACW has persistent, large scale SST anomalies in the vicinity of Australia, and 
could therefore be expected to show some relationships with Australian rainfall. To 
examine this in a fairly simple manner, we adopt a compositing type approach. Each 
month is characterised as being in one of five phases, depending on which of the two 
EOF patterns is dominant. The boundaries defining each phase are shown in Figure 
16. For each phase we then examine the rainfall distribution in the following season, 
presented in Figure 18 as the proportion of seasons in which the seasonal rainfall 
exceeds the median. The strongest signal appears with Phases 2 and 4, i.e., opposite 
signs in PC2. The positive phase of PC2 is associated with mainly wetter conditions 
over most of Australia, with drier conditions over the north and east in the negative 
phase. This is consistent with the relationship between PC2 and the SOI, i.e., PC2 and 

 37



Climate Variability and predictability 
 for southwest Western Australia 

the SOI are significantly positively related (at six months lag) so that positive PC2 is 
also associated with positive SOI.  PC2 is also related to Indian Ocean SST 
anomalies, with positive PC2 implying positive SST anomalies in the Indian Ocean 
west of Australia. These in turn are associated with a dipole pattern in Australian 
rainfall, with wetter conditions over northern and eastern Australia, and drier 
conditions along the south coast.   
 

 

Figure 17(a) Times series of raw monthly values of PC1 (blue), PC2 (green) and the SOI 
(red) for period January 1982 to April 1999. (b) Lagged correlations between PC1 and 
PC2 (red), the SOI and PC1 (blue) and the SOI and PC2 (green) based on data in (a). 

 
Summary 
 
The independent skill of the ACW in forecasting Australian seasonal rainfall is 
therefore is difficult to quantify due to: 
(i) The short period of reliable data - i.e., less than twenty years to describe a 
phenomenon with a nominal 4-year cycle. 
(ii) The statistical, if not physical, connections with the El Niño - Southern Oscillation 
and the Indian Ocean SST anomalies which also have strong known associations with 
Australian rainfall. 
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Figure 18. Percentage of seasons exceeding median rainfall following, one month later, 
months with ACW characterised by the five phases shown in Figure 16 (i.e., for January 
ACW phase, rainfall is in following March - May, etc). 
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Equatorial Indian Ocean SST Dipole 
 
Saji et al (1999) and Webster et al (1999) independently proposed that an internal 
mode of variability in the equatorial Indian Ocean led to a dipole structure in SSTs 
which could affect the climate of the surrounding region. This dipole mode, it was 
suggested, was independent of the El Niño - Southern Oscillation. The strength of the 
dipole, measured by the equatorial SST gradient across the Indian Ocean, was only 
weakly, and non-significantly, correlated with the El Niño, according to both sets of 
authors. If this was so, then the strength of the dipole may have some influence on 
rainfall in Western Australia, separate to the influence of the El Niño - Southern 
Oscillation. It was thought worthwhile, therefore, to more carefully examine the 
independence, or otherwise, of the dipole mode. It should be noted that this dipole is 
somewhat distinct from the dipole-like correlation structure described by Nicholls 
(1989), that exhibited more latitudinal structure. 
 
In fact the apparent “independence” of the equatorial dipole from the El Niño is an 
artifact of calculating correlations using all months on record, rather than first 
stratifying the data by season. For instance, if only the average September-November 
data are used then the correlation between NINO3 SST and the Indian Ocean dipole 
index defined by Webster et al. (1999) is 0.56 (data from 1958-97, p<.001). Time 
series of the two indices are shown in Figure 19. Apart from an occasional year (e.g., 
1961) the strong relationship between the two is clear. Thus the equatorial Indian 
Ocean dipole is NOT independent of the El Niño - Southern Oscillation. 
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Figure 19. Time series of NINO3 SST anomalies and the Webster et al. (1999) index of 
the strength of the equatorial Indian Ocean SST dipole.  

 
Closer examination reveals that the dipole of Saji et al. (1999) and Webster et al. 
(1999) is not even a dipole. If it was then there should be a consistent negative 
correlation between the western and eastern boxes that constitute the index of the 
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dipole strength. The correlation between the western and eastern boxes, again for 
September-November only, is actually only -.13 (n=40, non-significant). The time-
series of the two boxes are shown in Figure 20. Interestingly, there are periods when 
there does appear to be some evidence of “dipole-like” behaviour (eg., the last few 
years of the time series). There are other periods however, when there is no evidence 
of such behaviour. 
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Figure 20. Time series of the eastern and western boxes of the Webster equatorial 
Indian Ocean SST dipole index.  

 
Note that in Figure 20, there is clear evidence of an increase in SST over time, in both 
boxes. This warming would tend to offset any underlying negative correlation 
between the two boxes. That is, the coherent warming would confound the 
identification of a dipole-like structure. In order to determine the strength of this 
dipole-like behaviour we need to de-trend the SSTs in the two boxes. If this is done by 
linear regression against time, and the residuals from this de-trending are calculated, 
then the correlation between the two boxes is -.21. The larger magnitude of this 
correlation confirms that the warming trend is offsetting the tendency for a dipole-like 
structure.  
 
So there is a weak dipole-like structure but, as we saw earlier, the strength of this 
dipole is closely related to the El Niño - Southern Oscillation. Is there any dipole-like 
behaviour other from that imparted by the El Niño - Southern Oscillation? To answer 
this we calculate the linear regressions of the SSTs in the two Indian Ocean boxes 
against NINO3 SSTs, then correlate the residuals. Note that this has been done after 
detrending of all SSTs to remove the coherent warming. The final residual SSTs in the 
two Indian Ocean boxes now have a correlation of –0.04 (n=40, not significant). That 
is, once the effect of coherent warming and the El Niño - Southern Oscillation are 
removed, there is essentially no dipole-like behaviour in the Indian Ocean. What 
dipole-like behaviour is found in the equatorial Indian Ocean simply reflects the 
differential effect of the El Niño - Southern Oscillation on the two edges of the ocean.  
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This reflects the overall situation. However, if the time series of the residual SSTs in 
the two Indian Ocean boxes are examined (Figure 21), a somewhat different pattern 
emerges. Now we find that there are periods when there does appear to be a strong 
dipole-like behaviour (1990 to date; 1958-1965), with another period (1970-1990) 
when the variations of the two boxes are in phase. That is, the lack of correlation 
between the two edges of the equatorial Indian Ocean does not reflect random 
variations but two possibilities of either the entire ocean acting as a dipole or both 
sides varying coherently. 
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Figure 21. Time series of the western and eastern boxes comprising the Webster et al. 
(1999) dipole index, after detrending and removing the relationship with NINO3 SSTs. 

 
Summary 
 
There is no evidence of a consistent dipole-like behaviour in the equatorial Indian 
Ocean, apart from that imparted by the El Niño - Southern Oscillation. There are, 
however, periods when a dipole-like structure and behaviour appears. These are offset 
by other extended periods when both sides of the equatorial Indian Ocean vary in 
phase. This intriguing behaviour should be further investigated, to determine whether 
either form of Indian Ocean behaviour impacts on the countries surrounding the 
ocean. 
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Causes of decadal decline in rainfall in SWWA 
 
There were three (initially two) aspects of this part of the study: 
• Examine long integrations of the BMRC climate model, forced with observed 

SSTs, to determine whether these reproduce the observed decline in rainfall. The 
results from this were expected to provide guidance to the likely causes of the 
decline in rainfall. This part of the study has been delayed because of delays in 
obtaining the SSTs, and the extra work required for the first part of the Second 
Research Phase, and because of the addition of the third aspect of this part of the 
study (see below). However, some of the results obtained under the third aspect of 
this part of the study (see below) shed light on this question. 

• Use path analysis to examine relationships between possible predictor variables 
and rainfall. Path analysis studies were reported in the Phase 1 report. 

• Investigate whether long-term variations in SWWA rainfall are related to distant 
factors (e.g., rainfall trends in other parts of the globe). This aspect was added in 
May 2000, at the request of the IOCI Panel. The analysis has been done using the 
Climate Explorer web site of KNMI, using standard global data sets.  

 
The first step was to determine other areas where precipitation had exhibited a similar 
(downward) trend to that of SWWA. Precipitation was correlated with year to 
determine trends; the result is shown in Figure 22. The area of SWWA exhibiting a 
decline in rainfall over the period 1958-1998 is quite small in this analysis (because 
the data set is on a relatively crude grid). The area with the most obvious decline is 
the Sahel. Areas with increases are found in eastern Europe and North America.  

 

Figure 22. Correlation of year with precipitation from the CRU data set (?). 

 
How are the trends in SWWA and the Sahel and elsewhere related? Figure 23 shows 
the correlation between observed rainfall at Manjimup and observed rainfall 
elsewhere in the world. There are strong positive relationships with rainfall across 
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southern Australia, and in the Sahel. There are negative correlations with North 
America rainfall. 

 

Figure 23. Correlation of Manjimup May-October rainfall with May-October 
precipitation elsewhere.  

 
However, these correlations may simply reflect similar downward trends, rather than a 
more fundamental relationship which would also lead to strong correlations between 
interannual variations. This is clear from Figure 24 which shows the correlations of 
detrended rainfall across the globe, with detrended rainfall at Manjimup. The 
correlations with Sahel rainfall are weaker than with the original rainfall data, 
indicating that the correlation largely reflects the downward trends. Note that the 
detrended rainfalls in India are closely positively related to southern Australian 
rainfall. This reflects part of the global El Niño - Southern Oscillation pattern. 
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Figure 24. Correlation of Manjimup May-October rainfall with May-October 
precipitation elsewhere (all rainfalls detrended before correlations were calculated).  

 
How are the precipitation trends shown in Figure 22 related to trends in temperatures, 
especially SSTs? Figure 25 shows the trend in sea surface and near-surface 
temperatures over land. Large increases are obvious in the Indian Ocean.  

 

Figure 25. Correlation of near-surface temperature with time. 

The trend in precipitation from the NCEP reanalyses is shown in Figure 26. These 
trends should be related to the trends in surface temperature, shown in Figure 25, if 
the SST trends are causing the precipitation trends. In fact the figure reproduces the 
strong downward trend in precipitation over the Sahel. However, the figure shows 
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increasing rainfall across Australia. This suggests that the decline in rainfall over 
SWWA is not related to, or forced by, trends in SSTs in the Indian Ocean (or that the 
model is unable to correctly reproduce interactions with SSTs leading to changes in 
SWWA rainfall).  

 

Figure 26. Correlation of NCEP “precipitation” with year. 

 
Figure 27 shows the correlation with Manjimup precipitation and near-surface 
temperatures across the globe. Strong correlations are evident with Indian Ocean 
SSTs. 

 

Figure 27. Correlation between May-October Manjimup rainfall and near-surface 
temperatures.  
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The correlations are substantially weaker if the data are detrended first (Figure 28). 
This tends to confirm the point made above, that the trend in precipitation at 
Manjimup (and elsewhere in the SWWA) is NOT directly related to the variations in 
Indian Ocean SSTs. Note that the pattern of correlations with SSTs in the Pacific 
Ocean is very much indicative of a relationship with the El Niño.  

 

Figure 28. Correlation between May-October Manjimup rainfall and near-surface 
temperatures. Data detrended before calculation of correlations. 

 
The correlation of Manjimup with (detrended) NCEP surface pressures (Figure 29) 
shows that an increase in pressure over and surrounding Australia, and stretching to 
the west, accompanies low rainfall in SWWA. Low pressures are usually found in the 
eastern Pacific. This pattern is somewhat similar to the pattern of pressure anomalies 
associated with an El Niño.  
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Figure 29. Correlation between May-October Manjimup rainfall and sea level pressure 
from NCEP reanalyses. Data detrended before calculation of correlations. 

Figure 30 shows the trend in pressure from the NCEP reanalyses. Although the trends 
over the oceans, especially the southern oceans, are very suspect, trends over the 
continents should reflect reality. Over western Australia there has been a trend 
towards higher pressures. This would not be surprising, given the decline in rainfall in 
SWWA. However, why the NCEP reanalyses, despite this increase in pressure, also 
produces an increase in rainfall across the continent is not obvious. 

 

Figure 30. Correlation of year with sea level pressure. Note that the values over the 
southern oceans reflect changes in observing systems, rather than real trends. 
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Summary 
 
This study does tend to confirm earlier work (reported in the BMRC report on Phase 1 
work) suggesting that the decline in SWWA rainfall is not simply attributable to 
change sin Indian Ocean SSTs. However, there are problems with the use of NCEP 
reanalysis data to investigate this question, so the answer, at this stage, is not 
conclusive. If, however, further work does conclude that the decline is related to the 
changes in SSTs, we anticipate that the mechanism by which this is affected must be 
subtle (otherwise the analyses described here and in the BMRC report on Phase 1 
work should have provided some support for this hypothesis).  
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CONCLUSIONS 
 
This report describes the results of comprehensive BMRC studies of the predictability 
of interannual variations of SWWA Australia climate, and some study of the possible 
cause of the multi-decadal decline in SWWA winter rainfall. Not all of the work 
planned for the Second Research Phase has been carried out. In particular, studies 
using the BMRC climate model have not been completed (partly due to unexpected 
delays in obtaining new global SST fields). On the other hand extra work, in addition 
to that agreed to in the Second Research Phase plan, has been undertaken, at the 
request of Panel members. Specifically, spring predictability and wheat yield 
predictability has been investigated, along with the possible use of the equatorial 
Indian Ocean “dipole” in prediction of SWWA climate. As well, the possible use of 
SST gradients in prediction has been studied.  
 
The major findings of the Second Research Phase BMRC work, are: 
We found: 
• Some skill in predicting 

o Spring and summer rainfall 
o Spring and summer temperature 
o Summer extreme temperatures 

• More skill with SST1 or SST1 & 2 as predictors, than with SOI 
• Little skill in predicting winter rainfall 
• Considerable skill in predicting wheat yield (from observed climate) 
• Little skill predicting for the SWWA from SST gradients in the southeast Indian 

Ocean 
• “Differencing” of data (to avoid “breaks” in relationships) did not lead to 

improved forecasts 
• The ACW seems related to Australian rainfall, but extra predictability provided by 

the ACW is difficult to quantify 
• The equatorial Indian Ocean “dipole” is not really a dipole. But there is evidence 

that some behaviour in the Indian Ocean is independent of the El Niño - Southern 
Oscillation (and may therefore add to SWWA predictability studied thus far) 

• Further evidence that the decline in SWWA winter rainfall is not simply due to 
changes in Indian Ocean SSTs. 
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ABBREVIATIONS & GLOSSARY 
 
ACW: Antarctic Circumpolar Wave 
DTR: Diurnal temperature range 
EOF: Empirical orthogonal function 
LEPS: Linear error in probability space 
Loadings: Spatial pattern of EOF 
MSLP: Mean sea level pressure 
Scores: Time series of EOF values 
SLP: Sea level pressure 
SOI: Southern Oscillation Index 
SST: Sea surface temperature 
SST1: First EOF of Indian & Pacific Ocean SST 
SST2: Second EOF of Indian & Pacific Ocean SST 
SWWA: Southwestern Western Australia 
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CAR RESEARCH PROPOSALS FOR IOCI SECOND RESEARCH PHASE (JULY 
1999-DECEMBER 2000) 

 

1. Multi-seasonal predictions using global climatic models  

• Use the existing CSIRO Mark2 coupled prediction model to make hindcasts and predictions 
for 12 months ahead and evaluate their skill over SWWA.  

• Develop the model initialisation scheme to try to include the Antarctic Circumpolar Wave, 
and evaluate its impact on predictions for SWWA.  

• Commence development of the CSIRO Mark3 global coupled model for multi-seasonal 
predictions.  

• Check the predictability of SWWA winter rainfall based on mean sea level pressure and sea 
surface temperatures southwest of WA for the preceding May using output from the 1000-
year simulation.  

• Evaluate the skill of simulating rainfall over SWWA with the Mark3 atmospheric general 
circulation model driven with observed sea surface temperatures. Determine whether the 
drying trend over SWWA is reproduced.  

2. Millennial coupled simulations.  

• Extend the earlier analysis of climatic trends, especially over SWWA based on the 1000-year 
simulation to include results from the 5000+year simulation now available.  

• Use these data sets for a more detailed analysis of mechanisms involved in initiating and 
terminating climatic trends.  

• Clarify the origins and controlling mechanisms of the north-west winds over Australia using 
the 1000-year simulation.  

• Quantify the Antarctic Circumpolar Wave signal in the 1000-year simulation and determine 
its influence over SWWA.  

3. Greenhouse simulations  

• Use the output from new simulations with the Mark2 coupled model (involving realistic CO2, 
O3 and aerosol distributions starting in 1870) to evaluate any greenhouse contribution to the 
SWWA drying trend.  

• Quantify the sensitivity of SWWA rainfall to varying greenhouse scenarios with the Mark2 
model. (Four new scenarios are proposed).  

• Conduct a preliminary evaluation of the SWWA greenhouse signal using the Mark3 coupled 
model. 
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4. Observational Studies 

Use advanced signal detection techniques to analyse global historical oceanic and atmospheric data 
sets in order to: 

• Clarify relationships and interactions between dominant modes of climatic variability, such as 
the El Niño Southern Oscillation (ENSO) phenomenon, the Antarctic Circumpolar Wave 
(ACW), the North Atlantic Oscillation (NAO) and the Arctic Oscillation (AO), and 

• Examine the role that interactions between these climatic modes play in dictating rainfall 
relationships in SWWA. 

Additions To CAR Work Plan 

At the IOCIP Meeting (Number 7) on 15 October 1999, CSIRO climate model results were presented 
which referred to the timing and magnitude of changes to rainfall for SWWA due to the enhanced 
greenhouse effect (EGE). It was suggested then that, because the simulated changes occurred well into 
the 21st century, that it was unlikely that the EGE could have contributed significantly to the dry 
conditions over the past 30 years. 

In December 1999, CAR released a (WA EPA-funded) report on simulated climate changes from a 
number of international models, including the CSIRO model. The consensus results again implied a 
strong possibility of dry conditions for winter late in the 21st century. However, an interpretation of 
the results was that the drying trend was not expected to become more severe. It became apparent in 
discussions that any such interpretations, and their implications for the future, required more careful 
explanation. Consequently, because of the importance to some industry sectors of long-term planning, 
it was decided that CAR should perform additional analyses of climate model results with the aim of 
clarifying rainfall expectations in the medium term (i.e. decades) compared to the long term (i.e. 100 
years). 
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SUMMARY OF THE SECOND RESEARCH PHASE RESULTS 

Multi-seasonal predictions 

• When forced by observed sea surface temperatures (SSTs), the Mark3 climate model provides 
better simulations of rainfall over SWWA than the earlier Mark2 version. This improvement 
is seen in both the representation of the seasonal cycle, the amplitude of the seasonal cycle 
and the amplitude of interannual variations.  

• There is no strong evidence for a protracted decline in simulated rainfall over the period when 
the observed decline took place. 

• There is evidence of weak links between SWWA rainfall anomalies and SST anomalies in the 
Pacific Ocean but no evidence of any significant links to the Indian Ocean. 

• A seasonal prediction model based on the Mark2 model has been developed and exhibits skill 
at predicting an index of El Niño/La Niña events.  

Millennial coupled simulations 

• Results from the 1000-year simulation with the coupled model indicate that links between 
Indian Ocean SSTs and rainfall over SWWA can be simulated as a consequence of changes in 
the atmospheric circulation driving pressure, winds, rainfall and SST changes rather than as a 
consequence of the SSTs driving the other variables. This tends to confirm the results of 
observational studies indicating that the Indian Ocean offers little in the way of predictability 
of SWWA winter rainfall. 

• Similarly, an analysis of the relationship between an ACW-type phenomenon in the coupled 
model did not indicate that this provides a source of predictability for SWWA winter rainfall. 

• Neither was it possible to identify any link between southern Indian Ocean SSTs and SWWA 
winter rainfall. 

• Results from the 10,000-year simulation confirm earlier analyses, which indicate that annual 
rainfall totals over SWWA can exhibit variability on decadal, multi-decadal, and even 
millenial time scales due to internal processes. 

• The results did not reveal any links between changes in rainfall at these time scales and 
changes in other variables such as SSTs. 

Greenhouse simulations 

• The latest CSIRO climate change simulations comprise ensembles and also take into account 
a range of CO2 loadings and the effects of increased atmospheric sulphate content.  

• The different experiments all yield a slight decrease in SWWA annual winter rainfall by the 
end of this century. Combined with increased temperatures (+3.0 oC) there is a slight decrease 
(-15%) in soil moisture. 
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• In addition, an equilibrium climate change simulation (2xCO2 only) has been performed with 
the new Mark3 model. This is a simplified, but relatively inexpensive, greenhouse simulation. 

• The Mark3 simulated global changes are somewhat less than the Mark2 results. Despite these 
differences, the results for SWWA are similar. 

• None of the greenhouse simulations show evidence of any significant decrease in rainfall for 
the SWWA region over the period 1970-2000 (as has been observed) 

• The internal (or "natural") variability in the various time series for rainfall tends to dominate 
any long-term trends over this century. 

• The observed rainfall decline is likely to comprise, at most, a minor contribution from the 
enhanced greenhouse effect. 

Observational analyses 

• Results of analyses of historical mean sea level pressure data indicate that recent trends in an 
"Antarctic Oscillation" pattern are consistent with observed decreases in SWWA rainfall. 
However, the link does not explain the amount of decline observed over recent time. 

Interpretation of greenhouse simulations from other models 

• The results of climate change experiments from several different models (including the 
CSIRO model) have been stratified according the ability of each model to reproduce the 
seasonal cycle of rainfall for SWWA. As a result, only three models (the Hadley Centre 
model, the Geophysical Fluid Dynamics Laboratory (GFDL) model and the CSIRO model) 
were selected. 

• Of these 3, the Hadley Centre model yields the largest percentage decrease in SWWA winter 
rainfall by the end of the century while the GFDL model yields the least. 

• In each case there is little evidence that the observed decline can be attributed to the effects of 
the enhanced greenhouse effect. 

• While there is evidence of rainfall declines similar to that observed, these are followed by 
periods of relative rainfall increases. 
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Conclusions  

Sources of predictability 

Results from the Mark2 coupled model simulations tend to confirm the results from observational 
studies which indicate that, at this stage, there are no obvious sources for significant predictability for 
SWWA winter rainfall. It is possible that SWWA winter rainfall may be affected by variations in SST 
at middle to high latitudes but observations are not (and have not been) sufficiently comprehensive. 
This may become apparent if the quality of observations improve over time (e.g. with improved 
satellite retrieval techniques). It is also possible that the Mark2 coupled model simulations of raw 
SWWA rainfall are not sufficiently accurate enough that reliable conclusions can be drawn from the 
experiments described here. However, the application of the existing coupled model to seasonal 
predictions as part of the last phase of research will also address these issues. In the first instance the 
model is initialized with the most recent observed SST anomalies which may be of better quality in 
the suspected key regions of interest. Secondly, the application of downscaling techniques has been 
shown to improve the rainfall product from these models and this is expected to improve the quality 
of the output. The improvements in going from the Mark2 to the Mark3 version also suggest that the 
potential exists for improved predictability. 

Possible causes of the long-term dry conditions 

Several factors have been cited as possible explanations for the drying trend. These include the 
enhanced greenhouse effect, land-use changes, air pollution or simply a natural fluctuation in the 
climate system which may, on the basis of millenial coupled simulations, be expected to reverse itself 
in the near future. In particular, previous analyses have indicated that, even without any external 
forcing, long-term dry periods are not uncommon within climate model simulations. Analyses 
strongly suggest natural climatic variability, although we cannot definitely rule out some minor 
contribution from other factors as indicated in the following figure.  

IOCI
IOCI

Strength of possible effects

Lower                        Probability                   Higher

StrengthPollution

Land-use changes

(local and/or rem
ote) Greenhouse

Natural variability

?

 

This figure is mainly qualitative and mainly represents an ordering of both the strength and 
probability of each possible factor. It represents a consensus view of the research partners based on all 
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the available evidence (both observational and model generated). In the case of land-use changes (for 
example) it is regarded as less likely to be a contributing factor than the enhanced greenhouse effect, 
more likely than air pollution, but its magnitude is very uncertain. 

The important point to note is that natural variability implies that rainfall is as likely to be above 
average as it is below average over several decades. Therefore if the rainfall decline is part of the 
natural variability of climate in this region, then it is quite possible that above average rainfall will 
occur over the next decade or more. It is not possible to say when this will occur, other than to say 
that a wet winter this year or the next year would not be surprising. 
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RESULTS OF CAR IOCI SECOND RESEARCH PHASE STUDIES 

1. Multi-seasonal predictions using global climatic models. 

Introduction 

A coupled prediction model, based on the CSIRO Mark2 version, has been developed that can be 
initialised with observations, run forward in time and used to simulate the evolution of global sea 
surface temperatures, pressure and rainfall. The aim of this development is to improve seasonal 
predictions for Australia at lead times of up to 12 months. Hindcasts have revealed useful skill at 
predicting Pacific SSTs at long lead times. In particular, there is evidence of skill at predicting SSTs 
in key regions with a lead time of 6 months.  

The model, by design, is initialised with SST anomalies corresponding to observations. Cai et al. 
(1999) report that a version of this model, is capable of reproducing some of the features of the 
Antarctic Circumpolar Wave. In the version developed for seasonal predictions, SST anomalies 
associated with the Antarctic Circumpolar Wave are automatically incorporated. In theory, the model 
should be capable of simulating the impacts of this phenomenon if it contributes towards seasonal 
predictability. (It should be noted that, to date, there is little observational evidence that the ACW can 
contribute to the predictability of SWWA winter rainfall). 

There are three methods for extracting seasonal predictions of rainfall from these types of models. 

(a) Raw model rainfall output. 

The Mark2 version of the global climate model was shown not to produce sufficiently accurate 
rainfall simulations for SWWA and therefore the raw model rainfall product is of limited use for this 
region. This version is being superceded by the Mark3 version and this section describes an 
assessment of the rainfall product from this new version. 

(b) Statistical 

In this method, simulations of key climatic indices are used to estimate rainfall according to the 
historical record. Given a prediction of a key SST index for July (say) from as early as January, it is 
possible to estimate the probabilities for rainfall being above or below average based on the historical 
record. This approach to seasonal predictions is most relevant to eastern and northern Australia where 
there are strong SST/rainfall relationships. This section also describes how this approach has been 
implemented. 

(c) Downscaling 

This method makes use of the simulated fields of temperature, humidity and  pressure and yields a 
more credible estimate for local rainfall than the direct model product. This technique is under 
investigation as part of the next phase of research. 

Mark3 rainfall simulations 

As part of Atmospheric Research’s own research activities, the atmospheric component of the CSIRO 
Mark3 model is being used to simulate the observed climate by forcing it with observed sea surface 
temperatures (SST). The first simulation covered only the timeframe 1979-1995 and was a 
contribution to the second international Atmospheric Model Intercomparison Programme (AMIP2). 
Currently five additional simulations are under way, for 1949-1998, using the Global Sea Ice and Sea 
Surface Temperature (GISST) datasets prepared by the U.K. Met. Office. To date three of the GISST 
runs have passed the 1990 year mark and were available for the present analysis. 

64 



Smith, Hunt, Watterson & Elliott 

Figure 1. Comparison of observed rainfall (from the NOAA dataset) with the ensemble mean 
simulation results obtained by forcing the atmospheric component of the Mark3 CSIRO model 
with observed SST for the period 1978-1990. 

The model outputs from these various simulations have been compared against observed rainfall for a 
region of SWWA (32°-35°S, 116°-120°E). The motivation behind this comparison is to determine 
how accurately it is possible to ‘predict’ rainfall in this region given a ‘perfect’ SST forcing field. 
This then permits an estimate to be made of the ultimate predictability of rainfall, compared with 
predictions involving a coupled global climatic model where the SSTs have to be predicted ab initio. 

The first analysis was restricted to the AMIP2 period and used a global rainfall dataset made available 
by NOAA (Xie and Arkin, 1996). The observations (noaaSW) are compared with an ensemble of 
model outputs (ensemble) in Fig. 1. The ensemble comprises the mean of 3 GISST runs and the 
AMIP2 run. An ensemble is needed because the simulated rainfall is chaotic and averaging over a 
number of runs is required in order to improve the signal-to-noise ratio. The results in Fig. 1 reveal 
that it is possible to simulate both the seasonal cycle and much of the interannual variability of rainfall 
over the region with some accuracy over the period 1979-1986, but less so over the period 1987 to 
1990. Enlarging the size of the ensemble may improve on this situation. Examination of the high 
frequency variability in this figure, suggests that for any given month only low confidence exists as 
regards predictability, even though the interannual and seasonal changes may be well-predicted. 
However, the improvements in the agreement in this figure for the Mark3 model, compared with a 
similar intercomparison for the Mark2 model in the previous IOCI report, indicates that future model 
improvements might at least partially rectify these current problems. 

It is, however, necessary to evaluate model simulations/’predictions’ in a broader purview than that 
provided by the time series in Fig. 1. For example, in Fig. 2 the global distributions of the observed 
(NOAA) and simulated rainfall (single GISST run) for August 1981 are compared. The overall 
patterns agree quite well with the marked exception of Australia. While the rainfalls for SWWA 
agree, the simulation produced much higher rainfall across most of Australia. This difference can be 
attributed to use of too high a temporal frequency (i.e. one month) comparison and the limitation to a 

65 



Climate variability and predictability for south-west Western Australia 

single simulation. The essential point which comes out of this analysis is that predictions for any 
selected region must be considered in the context of the global distribution to ensure that plausible 
outcomes are being obtained. 

 

Figure 2. Observed (top) and simulated (bottom) rainfall distributions for August 1981. The 
simulated rainfall is based on a single run with the atmospheric component of the Mark3 
CSIRO model.  The shading corresponds to amounts in millimeters per day. 

Comparisons with observed rainfall were also made with the GISST ensemble (3 runs) for the period 
1949-1990. This highlighted a problem with the observational data. Two rainfall datasets were 
available for this period, the NCEP-NCAR global re-analysis and a high resolution analysis for 
Australia-only produced by the Queensland Department of Natural Resources (QDNR). A comparison 
of the rainfall for SWWA based on these two datasets is given in Fig 3. The overall lack of agreement 
is disturbing. The QDNR dataset, from the way it is derived, might be expected to resolve intense, 
local rainfall somewhat better than the NCEP-NCAR dataset, but such differences should prevail for 
the whole of the time period in the figure, not just the first 20 years. Even within the later period there 
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are marked disagreements, (e.g. 1975 and 1983). The utility of the QDNR dataset is also limited 
because of its restriction to Australia only. 

 

Figure 3. Observed rainfall values for SWWA as obtained from the NCEP-NOAA and QDNR 
analyses. 

 

Figure 4. Comparison of observed rainfall (ncepSW) from the NCEP-NCAR dataset and 
simulated rainfall (based on a 3 member ensemble) for  SWWA 
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The GISST ensemble (3 member) compares reasonably well with the NCEP-NCAR rainfall in Fig 4. 
Extreme peak values tend not to agree, but as these are normally attributable to a single month such 
agreement may not be achievable. Certainly enlarging the GISST ensemble to 10 members (which is 
planned) would be expected to improve overall agreement. Of particular interest is the fact that the 
GISST ensemble includes a rainfall reduction commencing after 1965 in Figure 4. What caused this 
decline, and whether it is related to SST changes, remains unclear. Certainly the decline shown in the 
figure is relatively sharp, which would argue against incremental CO2 increases in the atmosphere 
through this period. 

The comparison with the QDNR dataset is very different. The QDNR values better reflect the rainfall 
decline but Figure 5 also suggests that the model values underestimate the observed rainfall. The 
QDNR values (unlike the NCEP-NCAR values) are based purely on interpolated observations and 
represent small-scale rainfall features including topographic effects. These are generally not resolved 
by a coarse grid climate model and so the underestimates of rainfall totals is not unexpected.  

 

Figure 5.  As for  Fig. 4 but using the observed rainfall (QDNRSW) from the QDNR dataset. 

A critical aspect is to demonstrate whether it is possible to predict SST distributions adequately for 
useful seasonal predictions of rainfall to be obtained. To this end it is important to know which 
regions of the ocean are most important as regards the influence of the SST distribution on SWWA 
rainfall. This was investigated by correlating the rainfall simulated for this region with the observed 
SSTs used to force the Mark3 model. The correlation coefficients, for the period 1949 to 1990, are 
shown in  Fig. 6 for a single ensemble member of the GISST simulations. Results were remarkably 
similar for other ensemble members, indicating these correlations are a robust outcome. While the 
maximum correlations are somewhat below the 90% significance level, the results suggest that SST 
variability in the tropical Pacific is the major (albeit weak) influence on SWWA rainfall. Since the 
SST values in this oceanic region are the most predictable over the globe this, again, is encouraging as 
regards the ability of a coupled climatic model to predict the forcing field for the SWWA rainfall 
variations. 
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The improvement of the Mark3 CSIRO model compared with the Mark2 version indicates that future 
model development may offer even more encouraging prospects for seasonal predictions for  SWWA. 
The agreement between the ensemble output and NCEP-NCAR and NOAA datasets reveals that 
considerable skill exists in ‘predicting’/simulating rainfall for this region. This outcome will be 
quantified better when a larger simulated ensemble becomes available. 

 

Figure 6. Correlation of observed sea surface temperatures with rainfall for  SWWA as 
simulated with the Mark3 CSIRO atmospheric model. 

 

Coupled/statistical model predictions 

Figure 7 shows an example of predictions from the CSIRO model of the SST index referred to as 
NINO3.4, which provides a measure of El Niño or La Niña events. The observed values (circles) 
indicate that La Niña conditions have persisted from 2000 through to January 2001. The latest (at time 
of writing) predicted values (squares and diamonds), indicate that these conditions will slowly weaken 
during the remainder of the year. If relatively cool conditions persist through to April 2001, then 
Figure 8 provides an indication of the probabilities for autumn rainfall totals to exceed their median 
values. These probabilities are based on observations over the period 1950-1999. In this case the 
probabilities for exceeding the median are enhanced over northern and eastern Australia, reduced over 
much of Western Australia, but not altered significantly for SWWA. This is consistent with findings 
to date that El Niño and La Niña events do not have a large impact on autumn rainfall in this part of 
the continent. CSIRO Atmospheric Research now routinely makes this information available on the 
web site http://www.dar.csiro.au/res/cm/coca.htm . 
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Figure 7. Predicted NINO3.4 index for 2001 from the CSIRO seasonal prediction model. 
Observed monthly values of the index January 2000 to January 2001 (circles), predicted values 
starting from January 2001 (squares) and February 2001 (diamonds). 

 

Figure 8. Probabilities for autumn rainfall totals exceeding their long-term median value when 
the NINO3.4 is in the cool category.  
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2. Millennial coupled simulations.  

Introduction 

Previous work (e.g. Smith et al., 2000) identified a link between SWWA winter rainfall and both sea 
surface temperatures and mean sea level patterns over the Indian Ocean. However, it appeared that 
these links offered little in the way of predictability and that they might arise as a consequence of the 
atmosphere directly forcing both the SSTs and the rainfall in this region. In the Phase 1 report, 
detailed results were presented from a 1000-year simulation with the Mark2 CSIRO coupled global 
climatic model. These results demonstrated that natural climatic variability could possibly account for 
the current drying trend in SWWA. A number of analyses were made highlighting the occurrence, 
frequency and amplitude of rainfall anomalies over the globe, which set the situation in SWWA in 
perspective. This section reports on the results of further analyses of the 1000-year simulation and an 
analysis of the 10,000-year simulation which address these issues. 

Further analyses of the Mark2 coupled model 1000-year simulation 

Eastern Indian Ocean SSTs 

Observational studies (e.g. Smith et al., 2000) have found moderate (although barely significant given 
the limited length of the data) correlations between SSTs to the west of Australia and winter rainfall 
and surface temperatures in WA and appeared to indicate some potential predictability using May 
SSTs. The 1000-year coupled model simulation has been used to explore this relationship. While the 
GCM may have limitations due to its moderate resolution, it is expected to model the basic processes 
relating SSTs and rainfall, and the length of the run removes any uncertainty in the relationships, at 
least.  

An SST pattern, based on the region implicated in the observational studies, was defined and an 
amplitude index for each month of the simulation was determined. The correlations between this 
index and winter (June-August) means in the same year over the 1000 years are shown in Figure 9.  

Figure 9.  Correlations (x100) of SST index associated with SSTs to the west of Australia with 
mean surface temperature and rainfall during June-August in the 1000-year GCM simulation. 
Shown are the values for (a) SST index in July with surface temperature, (b) SST index in May 
with surface temperature, (c) SST index in July with rainfall, and (d) SST index in May with 
rainfall 
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The correlation pattern between the index and surface temperatures (Fig.9a)  
shows the SST pattern. It also shows that the SST anomalies are associated with land-surface 
temperature anomalies over much of the continent. Note that land temperatures vary more than SSTs, 
so the actual anomalies are more similar across the west coast than the correlations may suggest. The 
correlation pattern using the May index (Fig. 9b) indicates that both the SST and land-surface 
temperature anomalies tend to persist into winter. The correlation pattern between the July index and 
winter rainfall (Fig. 9c) shows that enhanced rainfall over the warmer ocean is associated with 
decreased rainfall in a band to the north and east, including central WA. This pattern resembles the 
association between Australian winter rainfall and Indian Ocean SSTs identified by Nicholls (1989). 
Smith (1994) demonstrated that this type of association is only simultaneous and offers little in the 
way of predictability. The model results confirm this since only the ocean rainfall is usefully 
predictable (Fig. 9d). From other results (not shown), it can also be shown that the SST anomalies in 
May are associated with low surface pressures that sometimes extend over land during winter but are 
very weak,  and have little effect on WA rainfall. In contrast, the July index is large when the SST 
anomalies have been forced by surface heating during June and July due to northwesterly wind 
anomalies. The pressure over the land is higher than usual during those months, and rainfall lower - 
thereby indicating that the relationship is not one of the SSTs forcing the atmosphere, but rather the 
atmosphere forcing the ocean. Therefore, while there is little predictability associated with these 
Indian Ocean SST patterns, it should be noted that there is some evidence that they may be remotely 
forced by the Pacific Ocean as part of the ENSO "cycle" (see Baquero-Bernal and Latif, 2001). 

The Antarctic Circumpolar Wave and its influence over SWWA 

White (2000) has suggested that the Antarctic Circumpolar Wave may involve coupled atmospheric-
ocean anomalies that include predictable rainfall anomalies over SWWA. Given the shortness of the 
data record, and the time-filtering performed in that and similar studies, this conjecture remains far 
from proven. 

Cai et al. (1999) analysed 60 years from a CSIRO coupled model simulation and focussed on the 
results for Southern Ocean SSTs. While an ACW-type pattern was identified, it did not exhibit a clear 
propagating wavenumber-2 signal as in the observations. Given the completion of the 1000-year 
simulation with this model, a further assessment of the simulation of this high-latitude component is 
now possible. Firstly (and based on the observed ACW) an index with an amplitude of wave-2 
structure was derived. For each phase position in May, the index was correlated with the following 
winter means of SST and rainfall. In each case the correlations with SST were relatively strong in the 
South Pacific (Fig.10a) but relatively weak in the Indian Ocean -again indicating that a propagating 
wave-2 structure is not prominent in the model. However, the correlations with equatorial Pacific 
SSTs supports the recent work of Cai and Baines (2001) which indicate that ENSO events play a 
major part in generating the high-latitude patterns. The correlation of the May index with winter 
rainfall (Fig. 10b) is very weak over WA, but less so over western Pacific rim where ENSO effects 
are apparent. Consequently, the results do not indicate that there is any significant predictability for 
WA based on ACW-like SSTs, at least within the current model.  
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Figure 10.  Correlations (x100) of an index associated with Southern Ocean wave-2 SSTs in May 
with (a) surface temperature and (b) rainfall during June-August in 1000-year GCM 
simulation. 

 

Southern Indian Ocean SSTs 

Focussing now on the Indian Ocean SSTs within the 1000-year simulation, an index has been derived 
that captures much of the variability to the southwest of Australia. Correlations between this index in 
July and winter SSTs identifies the region of interest (Fig.11a). A correlation was performed between 
the index in September and pressure anomalies during winter (Fig.11b) and between the index in May 
and the pressure anomalies in winter (Fig. 11c). The fact that the pressure anomalies in winter are 
associated more with the SSTs in September, rather than the SSTs in May with the pressures in winter 
confirm the previous findings that the atmosphere tends to drive the SST anomalies in this part of the 
world. In both these and other cases analysed, the precursor pressure anomalies are consistent with 
north-easterlies over the ocean surface, which leads to warming (see Watterson, 2000). Consequently, 
there is also no evidence of a significant predictability of winter rainfall from May SSTs (Fig.11d). 
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Figure 11.  Correlations (x100) of SST index associated with SSTs to the southwest of Australia 
with mean surface temperature and rainfall during June-August in 1000-year GCM simulation. 
Shown are the values for (a) SST index in July with surface temperature, (b) SST index in 
September with surface pressure, (c) SST index in May with surface pressure, and (d) SST 
index in May with rainfall. 
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Analysis of the 10,000-year run 

A new simulation with a slightly modified version of the Mark2 CSIRO model extending to 10,000 
years has now been completed. The intention here is not to repeat the analysis made for the 1000-year 
run but to emphasize some aspects of millennial variability. However, it needs to be emphasized that 
decadal drying and wetting trends similar to those in the 1000 year run occurred in the 10,000-year 
run. Hence, there is a robust expectation that the SWWA drying trend is probably principally 
attributable to natural climatic variability as demonstrated via the model simulation. 

An indication of annual mean rainfall variability over SWWA is given in Fig. 12 where all 10,000 
years from the simulation are plotted. A rather stable situation existed with no major, long-term trends 
apparent in this time series. Negative rainfall anomalies rarely exceeded 0.4 mm day-1, but positive 
anomalies ranging up to almost 1.00 mm day-1 occurred on a number of occasions. 
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Figure 12. Time series of rainfall anomalies for SWWA from a 10,000-year simulation with the 
Mark2 CSIRO model. 

Despite the apparent stability exhibited in this time series multi-millennial variability did occur. An 
example of such variability is shown in Fig. 13 and Fig. 14, where results for the first two millennia 
are compared. The raw, annual mean values in the right hand panels illustrate more clearly the 
temporal variability. Decade-long anomalies can be identified in these panels. In the left hand panels 
the rainfall anomalies are illustrated after having been smoothed with a 10-point running filter. These 
panels more clearly identify decadal-scale anomaly trends, and reveal that such smoothed trends can 
have durations of up to 50 to 60 years. These results confirm the conclusions made previously from 
the 1000-year simulation. 
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Figure 13. In the right hand panel annual mean rainfall anomalies are shown for the first one 
thousand years of the 10,000-year simulation. In the left hand panel the time-smoothed 
variations are given. 

 

Figure 14. As for Fig. 13 but for the second one thousand years of the 10,000-year simulation. 

There is, however, a more subtle aspect to these two figures. In Fig. 13 the periodicity in the left-hand 
panel can been seen to be predominantly decadal, whereas in Fig. 14 a longer term periodicity is 
apparent. To some extent this difference in periodicities is also discernible in the raw annual mean 
values in the right hand panels. Fourier analyzing these two millennia separately clarified this 
difference. The outcomes are very clearly displayed in Fig. 15 where the dominant periodicity for the 
second millennium is 100 years, while it is only 10 years for the first millennium. 
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Figure 15. Spectral analysis of SWWA annual rainfall as simulated over two separate 1000-year 
periods. 

The implication of this outcome is that while the 10,000 years of the simulation, as shown in Fig. 12, 
is basically stable, there are millennial variations within the simulation. Clearly, the resulting duration 
of rainfall anomalies have different characteristics. For example, from the viewpoint of stability of 
rainfall for agriculture or water supply the first millennium of the simulation would be preferable 
because of the shorter duration of the anomalies. Unfortunately, as regards SWWA, the observational 
record is too short to discriminate between these two situations. Nevertheless, from a planning 
perspective it is valuable to know that such differentiation between different rainfall periods may 
exist. 

A considerable effort was made in attempting to clarify/identify possible mechanisms behind the 
decadal-plus length anomaly trends. Temperature anomalies, rather than rainfall anomalies, were 
considered in this analysis because temperature is a ‘continuous’ variable, unlike the intermittent 
nature of rainfall, and also experienced longer duration anomalies. 

The analysis attempted to identify the physical processes associated with the commencement or 
termination of a persistent temperature anomaly with conditions for the Indian Ocean being 
particularly investigated. No consistency was found between different temperature anomalies as 
regards the dominant physical processes. Hence no clear mechanistic basis for initiation or 
termination of climatic trends was obtained. 

An alternative approach was adopted which involved using an auto-regressive or Markov analysis. 
This analysis was used extensively on the 1,000-year simulation and revealed that rainfall trends 
could be represented by an order 1 Markov process. Using the Markov coefficients so-generated 
permitted rainfall anomaly time series to be regenerated that had the same characteristics as the 
originating time series. This outcome indicates that the rainfall anomalies simulated, and importantly 
the decadal trends, may be the result of random rather than systematic processes. This suggests that it 
may not possible to predict the occurrence of wet and dry trends, at least as simulated with the present 
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model. An order 1 Markov process also resulted from an analysis of the rainfall trends over SWWA 
using the 10,000-year simulation. Thus this outcome appears to be a robust result from the 
simulations. 

However, when the Markov analysis was applied to temperature anomalies over the ocean an order 2 
process was obtained. The regenerated time series using the corresponding Markov coefficients failed 
to reproduce the features of the original time series, both in amplitude and trend characteristics. This 
implies that solely random processes did not generate these oceanic temperature time series. As such 
some physical mechanisms were involved, presumably associated with the ‘memory’ attributable to 
the oceanic thermal inertia. In principal, these long-term temperature trends are predictable despite the 
failure, mentioned above, to identify the underlying mechanisms. How this conclusion can be 
exploited remains a matter to be determined by future research. 
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3. Greenhouse simulations  

Introduction 

This section reports on results from recent greenhouse climate simulations made with the Mark2 
coupled model using  four different scenarios (i.e. different amounts of carbon dioxide and aerosol 
distributions) and also preliminary results from the new Mark3 model using a simple mixed-layer 
ocean. The major aim of these studies is to identify any changes in rainfall that could be associated 
with the greenhouse effect and which could help explain the observed rainfall decline that occurred in 
SWWA around 1970, as well as investigating future possible rainfall changes. 

Analyses of greenhouse scenarios using the Mark2 model 

A new series of greenhouse simulations has been made or is being completed with the CSIRO Mark2 
coupled global climatic model. This involves using the Special Report on Emission Scenarios (SRES) 
input data. The major difference compared with previous simulations made with the CSIRO model is 
that the SRES scenarios include sulphate emissions into the atmosphere, which induce a cooling 
effect. [This represents the so-called direct sulphate impact; the indirect impact which involves 
modification to cloud properties has not been included at this stage because of current uncertainties 
regarding the physical processes involved]. These simulations also include future changes in 
atmospheric ozone concentrations that are to be expected as chlorofluorocarbon concentrations 
decline in the stratosphere. 

The SRES simulations cover the period 1990 to 2100 AD. However the simulations were effectively 
commenced in 1870, but have a common lead-in period 1870-1990, where observed values for CO2 , 
ozone and sulphate were specified. Thus, this initial period of the simulation effectively is an attempt 
to replicate the observed climate for this period. The atmospheric CO2 concentrations and sulphate 
aerosol burdens for the four SRES scenarios, known as A1, A2, B1 and B2, are shown in Fig. 16 and 
Fig. 17 respectively. The observed CO2 and sulphate values for 1870 to 1990 are also included in 
these figures, which clearly show the divergence of the individual scenarios after 1990. 

 

Figure 16. Equivalent atmospheric CO2 concentrations for the four SRES scenarios 
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Figure 17. Annual mean sulphate aerosol burdens for the four SRES scenarios. 

 

As can be seen from Fig. 16, these scenarios involve quite distinct CO2 atmospheric concentrations by 
2100 AD, ranging from 800 ppm for B1 to over 1400 ppm for A2. Such values should cover the 
actual CO2 concentrations likely to exist in the atmosphere by 2100 AD. Separate sulphate burdens 
are associated with these scenarios, (Fig. 17) but the important aspect of all scenarios is the decline in 
these burdens by 2100 AD. This is based on the assumption that appropriate emission controls are 
widely implemented, and the relative proportion of natural gas usage to coal increases. 

[Previous CSIRO greenhouse simulations (see Section 5) refer to the scenario known as IS92a, which 
assumes a 1% increase in effective greenhouse gas concentrations. In addition, previous results have 
attempted to take into account the effects of changes in aerosols, but in a relatively crude fashion. The 
SRES scenarios referred to here represent more realistic and representative scenarios since they 
involve different rates of CO2 increases and different aerosol loadings. The effect of the aerosols is 
also parameterised in a more realistic fashion. As an approximation, the IS92a results probably 
represents results lying between those of the A2 and B2 scenarios.] 

The CO2 and sulphate variations between scenarios produce temporally varying climatic responses, so 
that for much of the time to 2100 AD these responses are not necessarily dominated by the maximum 
CO2 concentrations associated with the A2 scenario. Since the SRES simulations commence in 1870 
they can be used to investigate whether there is any greenhouse influence on the observed  SWWA 
drying trend, which commenced in the late 1960s. Given the common lead-in period of 1870 to 1990 
only one simulation was available, and because of chaos in the climatic system this need not be truly 
representative. In order to allow for chaotic influences an ensemble of simulations is currently being 
generated, for the B2 scenario, commencing in 1870 and running out to 2100 AD. An ensemble of 
five simulations is planned and four simulations have so far reached 1970, with individual simulations 
extending to later dates. 

The rainfall time series for SWWA for these individual ensemble members, and the ensemble mean to 
1970 are shown in Fig. 18. 
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Figure 18. Time variation of rainfall for SWWA as produced in an ensemble of four simulations 
with the CSIRO Mark2 model based on the B2 scenario (At the time of writing, two go from 
1870 to 1970 and two go from 1870 to 1990. It is planned that this ensemble will eventually 
comprise a total of 5 simulations, all going from 1870 to 2100). The four individual simulations 
are represented by the thin lines, the ensemble mean by the thick line. 

 

The ensemble mean to 1970 indicates no sign of a drying trend for this region, although considerable 
interannual variability is present. Marked intra-ensemble variability occurred, which emphasises the 
need to generate ensemble means, particularly if short time periods are being considered. Although 
there is a suggestion of a drying trend for the two ensemble members which extend to 1990, there is 
also a recovery in 1990 itself. Until the complete ensemble is available, the presence or absence of a 
greenhouse-related drying trend cannot be excluded on the basis of Fig. 18. However, when the four 
scenario members are analysed for the period 1990 to 2100 AD, Fig. 19, there is only a slight 
indication of a drying trend over this period. While multi-member ensembles for each scenario would 
be desirable to clarify the impact of chaos, this is computationally impractical at this time. The 
indication from Fig. 19 is for only a slow drying trend to emerge in the SWWA under greenhouse 
conditions, which makes it unlikely that the current drying trend has any major greenhouse input. The 
downturn in the rainfall time series shown by the two ensemble members after 1980 in Fig. 18 would 
then appear to be associated with some chaotic affect rather than a greenhouse influence. When the 
ensemble of five runs is completed to 2100 AD this issue will be seen in perspective. Thus the 
observed drying trend in the SWWA can now be more confidently attributed to natural climatic 
variability, as indicated in the Phase 1 report and as discussed above. Of course, this statement is 
based on results from the CSIRO model only, other models might can indicate different outcomes (see 
Section 5). 
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Figure 19. Time variation of rainfall for SWWA as produced with the CSIRO Mark2 model 
based on single simulations using the 4 SRES scenarios (A1, A2, B1 and B2). 

 

A global perspective of potential rainfall changes under greenhouse conditions is presented in Fig. 20. 
This figure compared rainfall anomalies for the four SRES scenarios based on differences between the 
means of the last 30 years of the simulations and the first 30 years. Some systematic differences exist 
between the scenarios as regards the global distributions, which will not be discussed here, apart from 
noting that the B1 scenario produces the smallest rainfall anomalies. This is to be expected given the 
B1 CO2 concentrations in Fig. 16. 
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Figure 20. Rainfall anomalies for the four SRES scenarios defined as the difference between the 
mean of years 2070 to 2100 minus the mean of years 1960 to 1990 for annual mean conditions 
from the CSIRO Mark2 model. Colour bar coding is in mm day-1. 
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Figure 21. As for Fig. 20 but for surface pressure. The contour interval is hPa. 

 

 

All the scenarios indicate reduced rainfall in SWWA, although different rainfall anomaly patterns 
exist over the rest of Australia. The important point to note is that reduced rainfall for these scenarios 
is not a unique outcome for the SWWA, but part of a general reduction in rainfall over much of the 
Earth’s land surface under greenhouse conditions. The reduced rainfall over the SWWA is related 
generally to an increased surface pressure over this region, and into the southern Indian Ocean (see 
Fig. 21). Such a relationship is to be expected based on observed synoptic situations. Again the 
surface pressure anomalies vary with scenario. There is also an indication over the Pacific Ocean for 
more El Niño-type conditions to be expected under the greenhouse effect. 

A more useful indicator of the greenhouse effect on agriculture and water supply is the change in soil 
moisture availability. This is shown in Fig. 22 and indicates reduced soil moisture content over most 
of the global land surface, as well as SWWA. 
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Figure 22.  As for Fig. 20 but for soil moisture content. 
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Figure 23. Time series of screen temperature for SWWA for the four SRES scenarios based on 
the CSIRO Mark2 model. 

 

Even in regions where there is enhanced rainfall under greenhouse conditions it is possible to have 
reduced soil moisture. This results from evaporation increasing more rapidly than the rainfall increase 
due to the greenhouse-induced temperature rise. The screen temperature (i.e. 2-m height air 
temperature) changes over the course of the SRES scenarios are shown in Fig. 23 for SWWA. 

Screen temperature increases of up to 4K are indicated in the figure. Although there is noticeable 
interannual variability a clear trend in temperature can be seen by about 2020 AD. After about 2080 
AD the temperatures associated with the A2 scenario dominate, as would be expected from the CO2 
concentrations in Fig. 16. Prior to that time there is considerable intra-scenario variability. 

The impact of the greenhouse effect on soil moisture content in the SWWA is illustrated in Fig. 24. 
There is an overall decline in soil moisture content for all four scenarios, as expected from Fig. 22, 
which amounts to about 15% by 2100 AD. However, there is very strong interannual variability for 
the individual scenarios, which could reduce the impact of this drying trend in any one year. 
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Figure 24. Time series of soil moisture amount for SWWA for the four SRES scenarios based on 
the CSIRO Mark2 model. 

 

Summarising this section, it seems unlikely that the greenhouse effect has contributed to the present 
drying trend in SWWA. By 2100 AD an overall reduction in rainfall is indicated for this region (Fig. 
19), which, combined with rising temperatures (Fig. 23) will result in reduced soil moisture content 
(Fig. 24). Very noticeable interannual variability is a feature of the time series for rainfall and soil 
moisture, but not temperature. Apart from the temperature trends, there is little distinction between the 
various SRES scenarios over the timeframe to 2100 AD for SWWA. Nevertheless, a continuation of 
the simulations past 2100 AD would probably highlight the different changes, particularly those due 
to the A2 scenario, which corresponds to the largest CO2 concentrations. Beyond this time, the impact 
of the aerosol burdens (see Fig. 17) would become relatively smaller.  

As a precautionary note, it needs to be appreciated that the SRES simulations to 2100 AD are based 
on single runs, whereas ensembles are desirable. Also results from a single global climatic model 
(CSIRO) have been used. Other models would undoubtedly produce some differences from the results 
presented here. 

Preliminary analysis of greenhouse simulations with the Mark3 GCM 

A simulation of climate changes due to a doubling of CO2 has been performed using a version of the 
Mark3 GCM with a mixed-layer ocean. This version allows a rapid equilibration of the doubled CO2 
climate to be reached, and while it does not include the retarding effects of the deep ocean on the 
warming, in the case of the Mark2 model it has been found that the mixed-layer result is a good 
indication of long term changes simulated by the coupled model. A significantly smaller global mean 
warming of +2.6 oC was realized by the Mark3 model, compared with +4.3 oC for Mark2. The 
seasonal mean warming is typically +2 to +3 oC over Australia. These Mark3 results should be 
considered preliminary, due to both the non-transient nature of the simulation, the absence of any 
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aerosol forcing, and some minor changes made to the code in its subsequent conversion to a coupled 
GCM. 

Seasonal rainfall rates for both the present or 1xCO2 climate are shown in Figure 25, along with the 
doubled CO2 changes. The seasonal contrast in the present climate is well simulated by the model, 
although the summer rainfall extends a little far south in WA. The relatively high resolution of the 
model (1.9 degrees), allows a clear depiction of the SWWA winter maximum. The results due to 
doubled CO2 changes include small increases in annual rainfall over WA, although the winter SWWA 
decreases a little. These results need to be treated with caution since they differ from the more 
complete greenhouse simulations using fully coupled ocean models and only involve 20-year samples. 

  

Figure 25. Rainfall rates (in mm per day) simulated by the Mark3 GCM, for (from top to 
bottom) December-February, June-August and the whole year. The left column shows the 
present climate rainfall, and the right the change after doubling CO2, calculated from 20-year 
simulations of the 1xCO2 and 2xCO2 climates. 

 

Figure 26 shows the simulated surface soil moisture fields, scaled so as to give similar magnitudes to 
those of rainfall. The seasonal variation partly follows the rainfall, although there is a relatively large 
amount of moisture in central Australia in winter. Changes in moisture mostly parallel those in 
rainfall. As was found in the results for the four SRES scenarios using the Mark2 model (see Fig. 24) 
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moisture for SWWA decreases both in winter and annually. Figure 27 shows the sub-surface soil 
moisture field, with similar scaling. Although the seasonal variation is, as expected, smaller than for 
the surface, the pattern of changes is similar. 

Despite the limitations of this particular experiment, it is worth noting that the Mark3 model also 
simulates a decrease in rainfall and soil moisture for SWWA due to greenhouse effects. However, the 
simulated decreases appear to lie within the range of previous estimates. 

 

 

 

Figure 26. Surface soil moisture simulated by the Mark3 GCM, for (from top to bottom) 
December-February, June-August and the whole year. The left column shows the present 
climate values, and the right the change after doubling CO2, calculated from 20-year 
simulations of the 1xCO2 and 2xCO2 climates. 
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Figure 27. Sub-surface soil moisture simulated by the Mark3 GCM, for (from top to bottom) 
December-February, June-August and the whole year. The left column shows the present 
climate values and the right the change after doubling CO2, calculated from 20-year simulations 
of the 1xCO2 and 2xCO2 climates. 
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4. Observational Studies 

The role of southern hemisphere pressure patterns 

An empirical orthogonal function (EOF) analysis of mean sea level pressure data for the Southern 
Hemisphere over recent time reveals a contrast between the mid and high latitudes which has been 
described as "an Antarctic Oscillation". This pattern (Fig. 28) is characterized by positive anomalies at 
high latitudes and negative anomalies at mid- to low- latitudes. The time series associated with this 
pattern (Fig. 29) indicates a weakening over recent time corresponding to increases in pressure over 
Australia. The correlation between this pattern and rainfall is shown in Fig. 30. The rainfall product is 
of limited value because it is mainly the result of a numerical weather prediction scheme and does not 
necessarily agree with observations. However, the correlation pattern is consistent with previous 
findings that have shown a link between increased mean sea level pressure (MSLP) and decreased 
rainfall over SWWA. The reason for trends in the MSLP pattern remain unclear at this stage but it is 
worth noting that similar trends are seen in climate change simulations. However, as already noted, 
the model simulations indicate that the contribution of any greenhouse-related changes in rainfall to 
the recent observed decline in SWWA rainfall is relatively small.  

 

Figure 28. The first EOF pattern of Southern Hemisphere monthly MSLP data 1958-1998. 

 

Figure 29. Time series of EOF1 1958-1998. 
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Figure 30. Correlations between MSLP EOF1 and NCEP monthly rainfall 1958-1998. The sign 
of the correlations is such that an increase in the amplitude of EOF1 corresponds to a decrease 
in rainfall over SWWA. 
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5. Interpretation of greenhouse simulations 

Introduction 

In December 1999, CAR released a Western Australia EPA funded report on simulated climate 
change based on the results of a number of international models, including the CSIRO model. The 
consensus results again implied a strong possibility of dry conditions for winter late in the 21st 
century. Because the models and the climate change experiments all tend to differ, the various 
simulations can be regarded as providing an ensemble encompassing the range of possible outcomes. 
In particular, there appeared to be a level of agreement amongst a number of models concerning a 
projected decrease in both winter and spring rainfall over SWWA.  

This level of agreement could be interpreted as evidence of the existence of a robust signal in rainfall 
and therefore a reduced level of uncertainty for this part of the world. While this may be the case, it 
only represents one method of dealing with multiple climate change results. Rather than focus on the 
mean or the ensemble results, we have taken the further step of attempting to stratify the results 
according to some quality control criterion. In this case we have used the criterion that the simulated 
seasonal cycle of rainfall for the SWWA region must exhibit a winter maximum. This criterion is only 
satisfied by 3 of the 9 models, the Hadley Centre model, the GFDL model and the CSIRO Mark2 
model. (This is also evident in the results from the Mark3 model shown in Fig. 25). We could invoke 
further criteria such as the mean and variance of simulated winter rainfall should agree with 
observations but this is regarded as too restrictive if we are attempting to focus on a relatively small 
region within a global domain. Therefore, we refer to the percentage changes in simulated rainfall and 
can summarise the results from the 3 selected models in Table 1.  

Table 1. Projected percentage change in rainfall for SWWA, for various 30-year epochs, from the 3 
models which exhibit a winter maximum in seasonal rainfall. For each model there are two sets of 
results corresponding to either aerosol (“a”) or non-aerosol (“na”) results. The inclusion of aerosols in 
the climate experiments tends to result in less greenhouse-induced warming and smaller rainfall 
changes. 

MODELS MAM JJA SON DJF
HADCM2-na
2010-2039 -27  -8   0
2040-2069 -34 -22 -22
2070-2099 -39 -32 -48
HADCM2-a
2010-2039  -9 -15  -4
2040-2069  -5 -30 -21
2070-2099 -32 -31 -35

G F D L -n a
2 0 1 0 -2 0 3 9 5 -3 -3
2 0 4 0 -2 0 6 9 1 2  0 - 1 7 -4
G F D L - a
2 0 1 0 -2 0 3 9 7 -1 1 -1 1
2 0 4 0 -2 0 6 9 -4 -1 7 0
C S I R O -n a
2 0 1 0 -2 0 3 9 -1 -2 1
2 0 4 0 -2 0 6 9 -8 -1 9 2
2 0 7 0 -2 0 9 9 8 -2 8 -2 3
C S I R O - a
2 0 1 0 -2 0 3 9 9 -1 1 3
2 0 4 0 -2 0 6 9 -1 2 -1 6 1 7
2 0 7 0 -2 0 9 9 -7 -1 6 -1 0
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The Hadley Centre model simulates the largest percentage reductions in winter rainfall - 
approximately 40% by the end of the century. The CSIRO model indicates a reduction of about 10% 
while the GFDL model indicates only minor reductions by the middle of the century. It is not our 
intention to try and interpret these results here but to look more closely at how these projected 
decreases manifest themselves over time - particularly during the latter stages of the twentieth century 
when the rainfall decline became apparent. 

Figure 31 illustrates the time series of simulated winter rainfall for the SWWA region from each of 
the ("non-aerosol") experiments from the three models and from the "observed" rainfall time series 
(1907-1994) based on area-averaging the QDNR gridded rainfall data (e.g. see Smith et al.; 2000). In 
order to facilitate the comparison, each time series has been normalized about its long-term average 
and scaled by one standard deviation. Furthermore, each time series has been filtered using an 11-
point running average. The top panel compares the Hadley Centre model results (which involve the 
largest projected decreases) with the observed time series. In this case both time series appear similar 
over the period 1907-1970 but diverge thereafter. There is evidence of a significant decline, similar to 
the observed decline occurring at about 2010. There is little evidence of continued decline thereafter. 
The important point to note is that in both cases, there exists considerable variability. In fact the 
filtered time series indicate the existence in the model results of relatively wet and dry periods lasting 
about 20 years or so.  

The same comparison for the CSIRO model results is shown in the middle panel. In this case trend is 
much less evident but the decadal-scale fluctuations are still evident. In particular, it can be seen that 
the model simulates a relatively dry period around 1950 but relatively wet periods from about 2000 to 
2030. Note that these results are not simulations of rainfall at any particular date, merely simulations 
of possible rainfall scenarios over time. 

The final comparison (bottom panel) involves the GFDL model results. In this case there is no 
significant decrease in winter rainfall predicted. Even so, the time series reveals relatively dry periods 
that are comparable with the observed decline. 

In summary, if the model projections are to be believed, then it can be argued that the variable of 
interest (rainfall in this case) must be simulated with some degree of credibility. We have stratified the 
results from various climate change models and have effectively reduced the number of believable 
results down to three. These three results indicate a range of decreases to SWWA winter rainfall by 
the year 2100 varying from zero to -40%. 
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Figure 31. Winter rainfall anomalies from observations and as simulated in three greenhouse 
climate change experiments (no aerosol effects included): Hadley centre model (a), CSIRO 
model (b) and GFDL model (c). The anomalies are normalized with respect to their standard 
deviation over the complete period and have been smoothed with an 11-point running average. 
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SUMMARY 

During the first three years of the Indian Ocean Climate Initiative (IOCI), CSIRO Land and 

Water (CLW) has:  

• Examined the utility of stochastic downscaling models and prospects for their use in a 

statistical-physical, interseasonal climate forecasting system for southwest Western 

Australia (SWA). 

• Used stochastic downscaling as a means of unravelling the causes of the recent low 

precipitation sequence over much of the region. 

Downscaling may be defined as the quantification of the relation of small-scale climate 

variables to larger scale atmospheric patterns.  These patterns may be observed or simulated 

by general circulation models (GCMs). 

Our studies for IOCI Second Research Phase (July 1999 – December 2000) have again 

focused on the application of an extended nonhomogeneous hidden Markov model (NHMM) 

to daily May to October precipitation across a network of 30 stations scattered throughout 

SWA.  This model was selected on the basis of its documented performance and generality. 

The original set of goals proposed by CLW for IOCI Second Research Phase were (IOCI, 

1999): 

• The development of a new NHMM framework that considers precipitation amounts and 

occurrences jointly. 

• Investigation of the stationarity of NHMM parameters using global mean sea level 

pressure (MSLP) data sets. 

• Driving the NHMM with global MSLP data sets to obtain insight into the long-term, 

temporal and spatial changes in historical synoptic patterns over SWA. 
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• Investigation of the relationship between the changes in synoptic patterns over time and 

the observed secular breaks in SWA precipitation. 

• A new study of potential predictability using the new NHMM, the Mark 3 version of the 

CSIRO GCM and an updated historical sea surface temperature (SST) data set. 

• For GCM grid cells around SWA, investigation of the interdecadal variability in a 1000-

year, CSIRO9 Mark 2 GCM run with a view to detecting any secular changes in 

modelled atmospheric series and downscaled precipitation series and identifying their 

causes. 

Five factors led to modification of the above goals.  These factors were: 

• The development and testing of the new NHMM framework described above by our 

collaborators at the National Center for Statistics and the Environment, University of 

Washington, Seattle.  The new framework did not provide a noticeable improvement in 

model performance.  Consequently, we continued our research efforts with the original 

model. 

• The advent of the National Center for Atmospheric Research (NCAR) – National Centers 

for Climate Prediction (NCEP) Reanalysis dataset containing global atmospheric fields 

for the period 1958-1998.  This dataset encompasses the timing of the low inflow 

sequence for the Perth water supply system and the period used for estimating the 

parameters of the NHMM (1978-1992).  The Reanalysis dataset was derived by 

assimilating observed atmospheric data with a high resolution GCM. 

• The postponement of the CSIRO Mark 3 GCM runs described above. 

• An evaluation of the NHMM using the Reanalysis dataset that led to a revision of the set 

of atmospheric variables used by the model. 

• A promising line of investigation regarding the cause of the low precipitation sequence 

over SWA. 
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Consequently the research goals pursued by CLW during IOCI Second Research Phase were: 

• Evaluation of the NHMM using the Reanalysis dataset.  This work would reveal any 

deficiencies in the NHMM and provide insight into the stationarity of its parameters. 

• Following successful evaluation of the NHMM, investigation of the long-term temporal 

changes in historical synoptic patterns over SWA and thus identification of the cause of 

the observed secular breaks in SWA precipitation. 

• Downscaling the 1000-year, CSIRO Mark 2 GCM run with a view to characterising the 

probability of the observed low precipitation sequence. 

Our achievements and preliminary conclusions include: 

• After revision of the set of atmospheric predictor variables used in the NHMM, it was 

found that NHMM parameter estimates derived from atmospheric and precipitation data 

for the period 1978 to 1992, inclusive, could be used to simulate monthly precipitation 

over SWA for the period 1958-1998.  This suggests that the NHMM is robust against 

secular breaks in atmospheric circulation and precipitation, and that it may be a useful 

tool for downscaling an interseasonal climate forecast produced by a GCM. 

• Analysis of the results obtained from the NHMM revealed an abrupt shift and a clearly 

defined trend in the frequency characteristics of synoptic patterns that influence 

precipitation occurrence over SWA.  The timing and nature of these changes are 

consistent with the characteristics of the observed low precipitation sequence. 

• The timing of the shift appears to coincide with the well-documented change in the 

behaviour of the El Niño – Southern Oscillation that occurred in the mid 1970s.  The 

trend appears to be due to a different mechanism, and may be related to changes in the 

behaviour of the Antarctic Oscillation and an interaction between the Oscillation and El 

Niño.  

• The changes in the frequency characteristics of the synoptic patterns and the resultant 

low precipitation sequence since the mid 1970s are due to changes in a combination of 

atmospheric variables reflecting the location and intensity of low and high pressure 
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systems, and the moisture content of the lower troposphere.  The low precipitation 

sequence cannot be ascribed to change(s) in a single variable such as MSLP. 

• Results from the downscaled 1000-year GCM run suggest the recent low precipitation 

sequence over SWA is uncommon but not extreme. 

Future work will involve: 

• Downscaling interseasonal climate forecasts from the coupled ocean-atmosphere CSIRO 

Mark 3 GCM for the winters of 2000 and 2001.  This work will provide information 

about the reliability of forecasts and forecast lead-times. 

• Exploring the Reanalysis dataset with a view to identifying the large-scale climatic 

forcing responsible for the low precipitation sequence since the mid 1970s.  This work 

will involve a detailed investigation of the effects of El Niño and the Antarctic 

Oscillation on SWA precipitation. 

Outcomes from this work will include: 

• An assessment of the utility of downscaled, interseasonal climate forecasts from coupled 

ocean-atmosphere GCMs. 

• Further insight into the large-scale climatic forcing that has caused the low precipitation 

sequence. 
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1. INTRODUCTION 

1.1 Downscaling Climate Model Simulations 

Modelling the response of natural and agricultural systems to climate forecasts requires daily 

data at local and regional scales.  The need for improved quantitative precipitation forecasts, 

and realistic assessments of the regional impacts of natural climate variability and possible 

climate change due to the enhanced greenhouse effect, has generated increased interest in 

regional climate simulation.  Although existing general circulation models (GCMs) perform 

reasonably well in simulating climate with respect to annual or seasonal averages at sub-

continental scales, it is widely acknowledged that they do not provide credible simulations of 

precipitation at the space and time scales relevant to local and regional impact analyses 

(Arnell et al., 1996; Gates et al., 1996). 

The above problems have led to the development of statistical downscaling techniques to 

derive sub-grid scale weather from the coarse spatial resolution atmospheric data available 

from GCMs.  Downscaling techniques include: 

• Modelling the daily precipitation process through multivariate probability distributions 

conditional on explicitly derived, large-scale atmospheric circulation patterns (e.g., 

Bardossy and Plate, 1991, 1992; Bogardi et al., 1993). 

• Regressions on continuous atmospheric circulation indices, geographic location and 

topographical variables (Enke and Spekat, 1997; Huth, 1997; Wilby et al., 1998). 

• Artificial neural networks (e.g., Crane and Hewitson, 1998). 

• Hidden Markov models (see below) 

1.2 Nonhomogeneous Hidden Markov Model (NHMM) 

The downscaling method used herein consists of a nonhomogeneous hidden Markov model 

(NHMM) to simulate precipitation occurrence and multiple linear regression to simulate 

precipitation amounts in southwest Western Australia (SWA) (Hughes et al., 1999; Charles et 

al., 1999).  Recall from IOCI (1999) that the NHMM relates synoptic-scale, atmospheric 
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circulation variables through a finite number of hidden (unobserved) weather states to multi-

site, daily precipitation occurrence data.  The NHMM determines the most distinct patterns in 

a daily multi-site precipitation occurrence record rather than patterns in atmospheric 

circulation.  These patterns are then defined as conditionally dependent on a set of 

atmospheric predictor variables.  The weather states are not defined a priori.  A first-order 

Markov process defines the daily transitions from weather state to weather state.  The process 

is described as nonhomogeneous as the transition probabilities are conditional on a set of 

atmospheric circulation predictors.  The atmospheric predictors may include raw variables 

such as mean sea level pressure (MSLP) or derived variables such as north-south MSLP 

gradient.  In this way, the NHMM captures much of the spatial and temporal variability of the 

precipitation occurrence process. 

Model selection involves sequential fitting of several NHMMs with an increasing number of 

weather states and atmospheric predictors.  The fit is evaluated in terms of the physical 

realism and distinctness of the identified weather states as well as a Bayesian information 

criterion (BIC).  The objective is to select a NHMM that minimises the BIC, thus identifying 

a relatively parsimonious model that fits the data well.  The most likely weather state 

sequence is obtained from the selected NHMM using the Viterbi algorithm.  This permits the 

assignment of each day to its respective state (Hughes et al., 1999).  The ability to classify 

days into weather states that are distinct in terms of spatial precipitation occurrence pattern as 

well as synoptic situation means that the physical realism of the states can be assessed. 

The joint distribution of daily precipitation amounts at multiple sites is evaluated through the 

specification of conditional distributions for each site and weather state (Charles et al., 1999).  

The conditional distributions consist of regressions of transformed amounts at a given site on 

precipitation occurrence at neighbouring sites within a set radius.  An automatic variable 

selection procedure is used to identify the neighbouring sites that provide useful information 

about at-site precipitation amounts.  The neighbourhood radius is determined by steadily 

increasing its size until further increases result in marginal improvements in the proportion of 

total precipitation variability explained by the precipitation occurrences at neighbouring sites. 
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1.3 General Circulation Model 

In this report we used a 1000-year run from the Mark 2 version of the spectral 9-level 

atmospheric GCM developed by the CSIRO Atmospheric Research (hereafter referred to as 

CSIRO9 GCM) at a horizontal resolution of R21 (roughly 700 km).  Descriptions of the 

model can be found in McGregor et al. (1993) and IOCI (1999). 
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2. DESCRIPTION OF STUDY AREA AND DATA 

We defined SWA as the region extending from about 30° to 35° south and 115° to 120° east 

(Figure 2.1).  For the stations depicted in Figure 2.1, the percentage of annual precipitation 

that falls in the period from May to October varies from 66 to 86%: 25 stations have 

percentages greater than 71%. The majority of winter rains come from low pressure frontal 

systems.  Thus we divided the year into the winter half-year (May-October) and summer half-

year (November-April) seasons.  A full set of results for the winter half-year is presented in 

this report. 

 

Figure 2.1 Location of daily precipitation stations in southwest Western Australia (for key to 
numerals see Table 2.1). 

In our earlier work, the NHMM was fit to atmospheric and daily precipitation data for the 

period from 1978 to 1992.  The data were obtained from the Bureau of Meteorology.  

Twenty-five atmospheric variables were derived from this data set, and the data interpolated 

to a rectangular 3.75° longitudinal by 2.25° latitudinal grid.  An additional variable (850 hPa 

to 500 hPa thickness) was added to the list of candidate atmospheric predictors in 2000.  The 

locations of the 30 precipitation stations considered are shown in Figure 2.1.  A key to the 

numerals shown in Figure 2.1 is given in Table 2.1.  These stations have no missing records 

over 1978-92.  Further details are given in IOCI (1999). 
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Table 2.1 Details of Daily Precipitation Stations [Reproduced from IOCI (1999)].  

No. 
(Fig. 2.1) Station Name Station 

No. 
Elevation 

(m) 
Annual 

Precipitation  
(mm) 

1 Dalwallinu P.O. 008039 335.0 357 

2 Moora (Moora Shire) 008091 203.0 461 

3 Wongan Hills Res. Stn 008138 305.0 349 

4 Perth Airport M.O. 009021 20.0 802 

5 Dandaragan (Badgingarra Res. Stn) 009037 260.0 598 

6 Lancelin 009114 4.0 627 

7 Jurien 009131 2.0 560 

8 Bridgetown P.O. 009510 150.0 843 

9 Augusta (Cape Leeuwin A.W.S.) 009518 14.0 1000  

10 Busselton (Cape Naturaliste L.H.) 009519 97.0 830 

11 Donnybrook P.O. 009534 63.0 1002 

12 Dwellingup (Forestry) 009538 267.0 1279 

13 Mandurah (Park) 009572 15.0 888 

14 Pemberton (Forestry) 009592 174.0 1213 

15 Harvey (Wokalup Agric. Res. Stn) 009642 116.0 996 

16 Albany A.M.O. 009741 68.0 805 

17 Bencubbin (Bencubbin) 010007 353.0 320 

18 Cunderdin P.O. 010035 236.0 368 

19 Kellerberrin (composite) 010073 247.0 333 

20 Merredin (Res. Stn) 010093 318.0 309 

21 Beverley P.O. 010515 199.0 422 

22 Corrigin P.O. 010536 295.0 378 

23 Katanning P.O. 010579 310.0 485 

24 Kojonup (composite) 010582 305.0 542 

25 Lake Grace P.O. 010592 286.0 353 

26 Narembeen P.O. 010612 276.0 332 

27 Ongerup (Ongerup) 010622 286.0 383 

28 Pingelly P.O. 010626 297.0 455 

29 Wagin P.O.  010647 256.0 440 

30 Wandering (Shire) 010648 280.0 626 

Most of our analyses for IOCI Second Research Phase were based on the National Center for 

Atmospheric Research (NCAR) – National Centers for Climate Prediction (NCEP) 

Reanalysis dataset (Kalnay et al., 1996).  The dataset contains a long record of global 
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analyses of atmospheric fields for the 41-year period from 1958 to 1998.  Data are available 

at 0000, 0600, 1200, and 1800 GMT on a 2.5° latitude-longitude grid.  The Reanalysis project 

involved the recovery of land surface, rawisonde, pibal, aircraft, satellite, and other data from 

different countries and organisations, data quality control, and the assimilation of the data 

with a frozen state-of-the-art analysis/forecast system.  The use of a frozen system eliminates 

perceived climate jumps associated with changes in the data assimilation techniques.  A 28-

level spectral GCM with a horizontal resolution of T62 (roughly 210 km) is used in the 

assimilation system.  Output variables are classified into four classes (“A” to “D”) depending 

on the degree to which the variables are influenced by observations and/or the GCM.  For 

example, MSLP is a class “A” variable since it is strongly influenced by observational data.  

Humidity is a class “B” variable in that the GCM has a strong influence on its value despite 

the existence of observational data that directly affect it.  Reanalysis data for the atmospheric 

predictors in the NHMM were interpolated to the grid using for NHMM fitting. 

Some studies have reported spurious temporal trends in Reanalysis fields (e.g., Hines and 

Bromwich, 1999; Marshall and Harangozo, 1999).  We screened each atmospheric predictor 

series for changes in mean level that were large relative to the background variability in the 

Reanalysis data.  We used the nonparametric jump-detection algorithm proposed by Qiu and 

Yandell (1998) to screen each of the atmospheric predictor series for spurious jumps in their 

means.  Predictors that exhibited departures from normality were transformed prior to 

analysis.  Given that the daily atmospheric predictor series for each winter half-year are 

serially correlated, we used a small window width to reduce the dependence as far as 

possible. 

The data from the 1000-year GCM run were interpolated to the rectangular grid described 

above.  The historical and modelled atmospheric data were centred using their respective 

means.  This removes the effects of any bias in the modelled means on the downscaled 

simulations.  There did not appear to be any bias in the modelled variances.  Atmospheric 

variables derived from the modelled data were used as input to the NHMM: the NHMM was 

not fit to the GCM data. 
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3. EVALUATION AND MODIFICATION OF DOWNSCALING MODEL 

3.1 Introduction 

Recall from IOCI (1999) that a 6-state NHMM with three atmospheric predictors [the mean 

of MSLP across five grid points (hereafter referred to as mean MSLP), north-south MSLP 

gradient, and dew point temperature depression at 850 hPa (  could provide credible 

reproductions of at-site precipitation occurrence probabilities and their spatial association, 

and dry- and wet-spell length statistics at the seasonal (six-monthly) scale for the gauges 

listed in Table 2.1.   is defined as the difference between the air and dew point 

temperatures at 850 hPa.  Therefore, it is a measure of humidity in the lower troposphere.  A 

dry spell is defined as a sequence of consecutive days during which daily precipitation 

remains below 0.3 mm.  A wet spell is defined as a sequence of consecutive days during 

which daily precipitation equals or exceeds 0.3 mm.  The precipitation occurrence patterns 

and the composite MSLP fields associated with the weather states are given in Figure 3.1. 

)]dDT 850

850
dDT

In this section we use the NCEP-NCAR Reanalysis dataset to evaluate the NHMM.  One 

thousand 41-year sequences of daily May to October precipitation were generated from the 

fitted NHMM, conditionally on the atmospheric predictors extracted from the Reanalysis 

dataset.  For the first time the model’s performance is subjected to scrutiny on a monthly 

rather than a seasonal time scale, and an out-of-sample-validation over a period that is wetter 

than but similar in length to the fitting period.  Initial results indicated that the NHMM was 

inadequate.  It was evident that the intraseasonal variation in the atmospheric circulation over 

SWA had not been fully captured by the model.  Further investigation led to an augmented 

atmospheric predictor set for the NHMM.  The modified NHMM is shown to resolve most of 

the performance deficiencies of the original model. 

 

113 



Bates, Charles & Campbell 

1018

1002 998 994 1006 1010 1010

1018

1014

1014

St
at

e 
2

1014

1010
1006

1018
1014

St
at

e 
1

1014

1018

1014

10101006998

1018

1022

St
at

e 
3

.2 .4 .6 .8 1.0

.2 .4 .6 .8 1.0

.2 .4 .6 .8 1.0

 

Figure 3.1(a) Precipitation occurrence patterns and MSLP averaged over all days classified under 
weather states 1 to 3.  The diameters of the circles indicate daily precipitation occurrence probabilities at 

each site. 
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Figure 3.1(b) Precipitation occurrence patterns and MSLP averaged over all days classified under 
weather states 4 to 6.  The diameters of the circles indicate daily precipitation occurrence probabilities at 

each site. 
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3.2 Evaluation of the NHMM 

Figure 3.2 compares the simulated daily precipitation occurrence probabilities with historical 

values for the 30 sites for each month in the winter half-year over the fitting period (1978-

1992).  The NHMM underestimates precipitation occurrence during the wettest months (June 

and July) and overestimates occurrence in the driest months (September and October).  

Performance deficiencies are also apparent for May and August.  Moreover, there is a 

cyclical variation in the sign and magnitude of the bias in the simulated probabilities across 

the winter half-year.  
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Figure 3.2 Comparison of simulated and historical daily precipitation probabilities 
for the period 1978–1992. 

Similar problems were evident in the precipitation amount simulations.  The seasonal 

distribution of the errors in the simulation of monthly precipitation amounts for Pingelly is 

given in Figure 3.3.  The standardised residuals shown are defined by )(ei

 Tismre iiii ,,1,)( K=−=  (1) 

where  is the observed monthly precipitation amount for the ith month,  and s  are the 

mean and standard deviation of the 1000 simulated amounts for the ith month, and 

ir im i
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9015*6 ==T  for the 15-year fitting period.  The standardised residuals exhibit a cyclical 

variation through the winter half-year.  The simulated precipitation amounts for May and 

August are close to the observed, but the fit is poor to very poor for the remaining winter 

months.  This suggests that at least one additional predictor is required for downscaling 

experiments at the monthly time scale. 
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Figure 3.3 Box plots showing seasonal distribution of standardised residuals for Pingelly (Station 
28) for the period 1978–1992.The edges of the boxes mark the upper and lower quartiles.  The horizontal 
line within each box denotes the median, and the end points of the whiskers attached to each box denote 

the extremes.  If the notches on two boxes do not overlap, this indicates a difference in location that is 
roughly significant at the 5% level. 

An exhaustive but essentially fruitless search was undertaken to identify which of the 

remaining 23 atmospheric variables could account for the bias in the NHMM simulations.  

This suggested that the use of a combination of predictors might be required.  We used 

canonical correlation analysis (CCA) to quantify the correlations between linear 

combinations of the precipitation occurrence residuals for the 30 sites and linear 

combinations of the atmospheric predictors for 1978-1992.  In CCA, the pair of linear 

combinations having the highest correlation is determined first.  The next pair to be 

considered has the highest correlation among all pairs that are uncorrelated with the first pair, 

and so on.  The pairs of linear combinations are called canonical variables, and their 

correlations are called canonical correlations (Kshirsagar, 1972; Jobson, 1992).  

Prior to the CCA, two atmospheric variables (“10” and “11”) were removed from the 

predictor set since they are linear combinations of other predictors.  Thus the number of 

canonical variables and correlations is min (30, 24) = 24.  (Recall that there are 30 sites and 
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that there were 26 predictors before predictors “10” and “11” were dropped.) The 

atmospheric variables were standardised to zero mean and unit variance.  The precipitation 

occurrence residuals are defined by  

 )]1([)( t
k

t
k

t
k

t
k

t
k pppRr −−=  (2) 

where  if precipitation is greater than or equal to 0.3 mm at gauge k on day t and 0 

otherwise, and  

1=t
kR

  (3) ∑
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in which the probabilities  and  are determined from the fitted NHMM. We 

transformed the  to normality using an inverse probit transform.  The estimates of the first 

three estimated canonical correlations were 0.568, 0.516 and 0.326. 

)|( t
j

t
k SRP )( t

jSP

t
kr

A bar chart of the standardised coefficients for the first atmospheric canonical variable is 

given in Figure 3.4.  This variable has a relatively large positive coefficient for variable “1” 

(mean MSLP), and relatively large negative coefficient for variable “2” (mean geopotential 

height at 500 hPa), and moderate positive coefficients for variables “7” (east-west MSLP 

gradient), “25” (850 hPa to 500 hPa thickness), and “26”    ).( 850
dDT
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Figure 3.4 Bar chart of standardised coefficients for the first atmospheric canonical variable (for 
completeness, coefficients for variables “10” and “11” are shown as zero.) 
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A map of the standardised coefficients for the first precipitation occurrence residual canonical 

variable (hereafter called the first residual canonical variable) is given in Figure 3.5.  Stations 

with large negative coefficients are concentrated along the south coast of SWA.  Stations 

with large positive coefficients are located in the northeast corner of SWA and along the west 

coast.  Thus the first residual canonical variable contrasts the error in the NHMM fit for 

stations along the south coast with that for the northeast corner and west coast.  The moderate 

positive correlation between the first residual and atmospheric canonical variables suggests 

that this contrast is higher when centred mean MSLP, east-west MSLP gradient and  

are large relative to centred mean geopotential height at 850 and 500 hPa. Thus if rainfall 

occurs over SWA, it is more likely to occur in the north rather than the south due to the 

presence of a midlevel trough over the region or to the west.  When centred mean MSLP, 

east-west MSLP gradient and  are small relative to centred mean geopotential height at 

850 and 500 hPa, rainfall will tend to occur in the south relative to the north due to a high 

pressure system situated to the west of SWA with a ridge forming along the south coast.  
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Figure 3.5 Map of standardised coefficients for the first precipitation occurrence residual canonical 
variable.  Circles denote positive coefficients and squares negative coefficients.  The diameter of the 

circles and the lengths of the sides of the squares are in direct proportion to the magnitude of the 
coefficients.  

Figure 3.6 shows box plots of the first canonical variables for each month in the winter half-

year.  A seasonal cycle in both variables is apparent, and it is consistent with the size and sign 

of the bias evident in Figure 3.3.  Pair-wise comparison of the notches on the boxes suggests 

that there is a noticeable difference between the medians from month to month.  
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Figure 3.6 Box plots of the first canonical variables grouped according to calendar month. 

Table 3.1 summarises the features of the scatter plots of the first atmospheric and residual 

canonical variables (y- and x-axes, respectively) for each weather state.  For a given weather 

state, concentration of the values of these variables in a particular quadrant of the scatter plot 

indicates that the variables contain information about the occurrence of that state.  Consider 

the columns of Table 3.1.  Of the 362 data points in the 1st quadrant (upper left-hand side), 

88% correspond to days assigned to States 3 to 6, and 61% to days assigned to States 4 and 5.  

These percentages are well above the percentage that would have been if all of the data points 

in the 1st quadrant had been distributed uniformly across the six weather states (i.e., 17% per 

state).  Similarly, 88% of the 993 data points in the 2nd quadrant (upper right-hand side) 

correspond to days assigned to States 1, 2, 3, and 5 and 65% to days assigned to States 2 and 

5.  About 71% of the 401 data points in the 3rd quadrant (lower right-hand side) correspond to 

days assigned to States 2, 3 and 5.  Also, 93% of the 1004 data points in the 4th quadrant 

(lower left-hand side) are correspond to days assigned to States 3 to 6, and 81% to days 

assigned to States 4, 5 and 6.  Now consider the rows of Table 3.1.  About 51% of the data 

points assigned to State 1 and 71% of the data points assigned to State 2 are located in the 2nd 

quadrant.  About 53% of the data points assigned to State 4 and 70% of the data points 

assigned to State 6 are located in the 4th quadrant.  These percentages are well above the 

percentage that would have been if all of the data points in a given weather state had been 

distributed uniformly across the quadrants (i.e., 25% per quadrant).  Finally, consider positive 

values of the first atmospheric canonical variable alone.  About 60%, 76%, 47%, 36%, 48%, 

and 25% of the data points for States 1 to 6, respectively, fall in the 1st and 2nd quadrants. 

119 



Bates, Charles & Campbell 

Thus the first atmospheric canonical variable captures information about the occurrences of 

States 2, 6 and, to a lesser extent, State 4.  

Table 3.1 Numbers of Data Points in Quadrants of the Scatter Plots of the First Canonical 
Variables for Each Weather State in the Modified NHMM.  

Weather Quadrant  

State 1st 2nd 3rd 4th Subtotal 

1 16 90 38 34 178 

2 29 385 94 38 546 

3 46 137 86 121 390 

4 113 90 59 297 559 

5 106 264 106 290 766 

6 52 27 18 224 321 

Total 362 993 401 1004 2760* 

* (1992-1978+1) (31+30+31+31+30+31) = 2760. 

3.3 Modification of the NHMM 

The results described in section 3.2 suggest the incorporation of the first atmospheric 

canonical variable into the predictor set for the NHMM.  A stepwise regression analysis and 

an analysis of all-subset regressions based on leaps and bounds were undertaken to see 

whether a small subset of the 24 atmospheric variables could capture most of the information 

in the first precipitation canonical variable.  This did not prove to be the case.  Consequently, 

a NHMM with four atmospheric predictors (the fourth being the first atmospheric canonical 

variable) was fit to the observed atmospheric and precipitation data for 1978-92.  The 

precipitation occurrence patterns and the composite MSLP fields associated with the weather 

states for the modified NHMM are almost identical to those given in Figure 3.1 and will not 

be given here for the sake of brevity. 

Figure 3.7 compares the daily precipitation occurrence probabilities simulated by the 

modified NHMM with historical values for each month in the winter half-year over the 

period 1978-1992.  Comparison of Figures 3.2 and 3.7 reveals a noticeable improvement in 

model fit, particularly for the months of June and July (the wettest months of the year) and 

October (the driest month of the winter half-year).  

 120  



Stochastic downscaling experiments 
for southwest Western Australia 

Observed  probability

S
im

ul
at

ed
  p

ro
ba

bi
lit

y

0.2 0.3 0.4 0.5 0.6

0.
2

0.
3

0.
4

0.
5

0.
6

(e)  September

 

Figure 3.7 Comparison of simulated and historical daily precipitation probabilities for the period 
1978–1992 (modified NHMM). 

The seasonal distribution of the errors in the simulation of monthly precipitation amounts for 

Pingelly is given in Figure 3.8.  Comparison of Figures 3.3 and 3.8 reveals a noticeable 

improvement in fit for the months of June, July, October, and perhaps September.  
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Figure 3.8 Box plots showing seasonal distribution of standardised residuals for Pingelly (Station 
28) for the period 1978–1992 (modified NHMM).  
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The seasonal distribution of the monthly standardised residuals for Pingelly for the test period 

1958 to 1977 is given in Figure 3.9.  (Recall from section 3.2 that data for this period were 

not used to fit the NHMM.)  The residuals exhibit a cyclical variation through the winter half-

year.  However the line  lies between the upper and lower quartiles in each case.  With 

the exceptions of July and August, the distributions of the residuals are not symmetrical about 

the median in their middle regions (25th to 75th percentiles), and other diagnostics such as 

quantile-quantile plots (not shown) indicate departures from normality. The distribution for 

July contains an apparent outlier ( .  Little evidence of serial correlation was found 

in the residuals.  Consequently, we used the Wilcoxon signed-rank statistic to test the null 

hypothesis that the mean of the standardised residuals for a given month is zero against the 

alternative hypothesis that the mean is not zero.  The test statistics for the months May to 

October were found to be significant at the 0.189, 0.011, 0.185, 1.00, 0.575, and 0.105 levels.  

Thus there is little evidence against the null hypothesis for all months other than June for 

which there is some evidence against the null hypothesis.   

0=e

)02.4=e

 

Figure 3.9 Box plots showing seasonal distribution of standardised residuals for Pingelly (Station 
28) for the period 1958–1977 (modified NHMM).  

A time series plot of monthly standardised residuals for Pingelly for the period 1958 to 1998 

is given in Figure 3.10.  Overall, the residuals form a horizontal band of uniform height 

centred about the line e  and 3% of the standardised residuals lie outside of the interval 

.  Similar plots have been obtained for the remaining 29 stations.  All stations 

have monthly standardised residuals greater than 3, but these residuals comprise only 1.3% of 

the 30*6*41=14760 station-months and do not exhibit any temporal trends.  This suggests 

,0=

22 ≤≤− e
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that the atmospheric predictors in the modified NHMM have accounted for any long-term 

time effects (such as changes in the atmospheric circulation over SWA) that are inherent in 

the Reanalysis data.  Given that the period 1958 to 1977 was wet relative to 1979 to 1992, 

this suggests that the modified NHMM is robust against the effects of climate shifts and 

trends on precipitation over SWA. 
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Figure 3.10 Monthly standardized residual series for Pingelly (Station 28) for the period 1958–1998 
(modified NHMM).  Broken vertical lines denote the fitting period for the NHMM (1978 to 1992). 
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4. EXPLANATION FOR THE MULTIDECADAL, WINTER PRECIPITATION 

DECLINE OVER SOUTHWEST AUSTRALIA 

4.1 Introduction 

The overall decline in annual precipitation over SWA since around the middle of the 20th 

century has been the subject of much interest [see citations in IOCI (1999) and Tapp and 

Cramb (2000)].  Most of the decrease is evident in the winter half-year (May-October) when 

about 80 percent of the annual precipitation occurs.  The number of rain days in the winter 

half-year has decreased over much of the region, and the average intensity and frequency of 

rare high-precipitation events during that season have decreased. 

The winter precipitation decline has had a marked effect on the surface water resources of the 

Perth region over the last 25 years.  Figure 4.1 shows a bar chart of the total annual inflow for 

the major reservoirs in the Perth water supply system.  The water year is defined by the 

period from May to April.  Since the 1975 water year, dam inflows have been consistently 

smaller than those in the past and, with only one exception (1996), smaller than the long term 

mean annual inflow.  Only once has an annual total precipitation at Perth exceeded the 70th 

percentile since 1967 (Tapp and Cramb, 2000). 
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Figure 4.1 Annual inflow series for major surface water sources, Perth Water Supply System.  
Dashed line shows mean annual inflow for complete record.  (Series supplied by Water Corporation of 

Western Australia.) 
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The timing of the abrupt shift in the inflow series roughly coincides with changes to the 

frequency characteristics of El Niño and a marked warming in the Indian Ocean after 1976 

(see citations in Clark et al., 2000).  Since 1975, El Niños are twice as frequent as La Niñas.  

This suggests that an investigation of the atmospheric circulation over SWA for the period 

covered by the Reanalysis dataset (1958-1998) could be revealing. 

4.2 Approach 

The linkage between the winter precipitation decline and regional changes in atmospheric 

circulation are investigated using the NCEP-NCAR Reanalysis dataset, observed daily 

precipitation series for the 30 sites shown in Figure 2.1, and the modified nonhomogeneous 

hidden Markov model (NHMM) described in section 3.  Recall that the transition from a 

given weather state to another in the NHMM is conditioned on a relatively small number of 

atmospheric variables (predictors) derived from the Reanalysis dataset.  Thus any changes in 

the evolution of the weather states may be linked to temporal changes in the atmospheric 

predictors. 

We hypothesized that the recent precipitation decline in SWA was caused by a change in the 

atmospheric circulation that occurred around 1976; and that this change would manifest itself 

in both the atmospheric predictor series used to condition the weather state transition 

probabilities in the NHMM and the weather state sequence derived from the fitted NHMM. 

We split the atmospheric predictor series and the weather state sequence into two parts with 

the breakpoint occurring at October 31st in either 1974, 1975, 1976, 1977, or 1978.  These 

breakpoints encompass the large-scale climate shift that occurred around 1976.  The periods 

from 1958 to the breakpoint year, and the year following the breakpoint to 1998, are hereafter 

called Epoch 1 and Epoch 2. 

Our analysis consisted of three parts: 

(1) Comparison of the NHMM weather state sequence for 1958 to the mid–70s with that 

for the mid–70s to 1998.  The comparison was made on a winter and a calendar month 

basis.  Plots of weather state probability series were used to discern any changes in 

synoptic patterns that may have occurred prior to the mid-70s. 
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(2)  An exploratory data analysis comparing the atmospheric predictor series for Epoch 2 

with that of Epoch 1. 

(3) A sensitivity analysis to investigate whether the precipitation decline since the mid–

70s can be attributed to changes in the behaviour of a single predictor in the NHMM. 

4.3 Methods 

4.3.1 Analysis of Weather State Sequence 

a. Changes in steady-state probabilities of weather states 

We used a two-sample t-test to assess the statistical significance of differences between the 

means of the winter weather state probability series for Epochs 1 and 2.  Exploratory analyses 

indicated that the data did not exhibit significant autocorrelation or departures from 

normality.  Rather than set an essentially arbitrary significance level, we used the probability 

value (P-value) to measure the strength of the evidence against the null hypothesis that the 

means are equal.  The P-value is the probability that a test statistic at least as extreme as that 

observed could have arisen by chance. 

b. Changes in weather state counts for each calendar month in winter 

When the sampling interval is reduced from six months to one month, the number of 

occurrences of any given weather state is relatively low.  Therefore, it is more appropriate to 

consider weather state counts (a discrete random variable) rather than weather state 

probability (a continuous random variable).  Given that weather state counts series are 

discrete, we used lag plots to check for serial correlation in the counts series for each period: 

little evidence of serial correlation was found.  An exploratory analysis of the counts data 

indicated that the underlying probability distributions were multimodal.  This precluded 

inferences based on commonly used discrete probability distributions.  Consequently, we 

used randomization to test the hypothesis that average weather state counts for Epoch 2 are 

the same as those for Epoch 1.  That is, to test whether the observed counts series for the 

weather states are likely or unlikely to have arisen by chance. 

Randomization testing is a procedure that is less dependent on distributional assumptions 

than conventional statistical methods.  It involves the determination of the P-value of a test 

statistic computed for an observed dataset by comparing the statistic's value with the 
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distribution of values obtained by calculating the test statistics for a large number of re-

orderings of the data (Manly, 1991).  Here the P-value is the proportion of values that are as 

extreme or more extreme than the test statistic's value in the randomization distribution. 

Box plots of the weather state counts data indicated the presence of extreme sample values 

and long-tailed probability distributions in several instances. Thus the sample mean would be 

a poor estimator of location. For each calendar month m and weather state s we test for a 

difference between the median weather state counts for Epochs 1 and 2. The test statistic is 

defined by 

 msmsms ccc 21
~~~ −=  (4) 

where msc1
~  and msc2

~  are the median counts for weather state s in Epochs 1 and 2, 

respectively. We used two-sided tests throughout since marked increases or decreases in 

weather states counts across the two epochs are of interest. Thus large positive and large 

negative values of msc~  are regarded as evidence against the null hypothesis that the medians 

are equal. We used 5000 randomizations for each m and s pair in (4) since complete 

enumeration of all possibilities would require an impractical 12

i

10)!2041(!20! ≈−41  re-

orderings of the observed dataset. 

c. Changes in weather state transition probabilities 

The application of 6×6=36 univariate two-sample t-tests to the components of weather state 

transition probability matrices could lead to the possibility of obtaining a significant result by 

chance alone.  Therefore, we used the Hotelling two-sample T2-test.  Let N denote the 

number of weather states and   denote a transition probability matrix with 

elements: 

,X ),,,1( Ni L=

 nNjSSPx ij
i
j ,,1,1,,1;)|( LL =−== τ

ττ  (5) 

where τ)|( ij SSP  denotes the estimated one-step transition probability of going from 

weather state i on one day to weather state j on the next day during year  The probability 

τ)iS|( NSP  is ignored since 

.τ
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We used the Hotelling two-sample T2-statistic to test the null hypothesis that the population 

mean vectors of the transition probability matrices for both Epochs are identical against the 

alternative hypothesis of different means (Chatfield and Collins, 1980).  Let  and  

denote the matrices defined by (5) for the pre-1978 and post-1978 periods, respectively.  The 

T2-statistic is defined by 

i i
1X 2X
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212 iiTii
nn
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= −  (7) 

where i
1x  and i

2x  denote the column means of  and , the superscript T denotes the 

transpose of a vector or matrix, and S denotes the pooled estimate of the common covariance 

matrix: 

i
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in which  and  denote the sample covariance matrices of  and .  The statistic 1S 2S i
1X i

2X

 2

21
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)2(

1 T
pnn

pnnF
−+

−−+=  (9) 

has the variance ratio F distribution with degrees of freedom p and n  .121 −−+ pn

The T2-distribution is a multivariate generalization of the Student t-distribution.  Thus the T2-

test assumes that the transition probability matrices have a multivariate normal distribution 

with the same, though unknown, covariance matrix.  Although the T2-statistic is not sensitive 

to the assumption of equal covariance matrices when the sample sizes are approximately 

equal, severe departures from normality may be cause for concern.  Consequently, we used 

randomization tests with 5000 randomizations each to check the P-values of the T2-statistics 

computed from the observed transition probability matrices. 
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4.3.2 Exploratory Analysis of Atmospheric Predictor Series 

The exploratory analysis focused on comparisons of the probability distributions of the 

predictors for Epochs 1 with those for Epoch 2.  The analysis consisted of two plots for each 

predictor: a Tukey mean-difference (m-d) plot (Cleveland, 1993); and a plot of the smoothed 

density estimates (Venables and Ripley, 1994) for each Epoch.  Let  and  denote the 

pth quantile for a given predictor for Epochs 1 and 2, respectively.  (The pth quantile is the 

value of the predictor below which 100p of the values fall.) The m-d plot graphs the 

differences  against the means 

p1E E

EE −

p2

pp 21 .2)( EE +

850

1−

,2,1(), =iF

21 pp  Thus the differences will be zero if 

the empirical distributions for Epochs 1 and 2 are the same, while systematic deviations from 

the zero difference line indicate the nature and size of differences between the distributions.  

Density estimates can give valuable indications of features such as skewness and 

multimodality in data.  The oldest density estimator for univariate data is the histogram.  

However, the interpretation of the features in a histogram is sensitive to the choice of the 

number of class intervals and starting point of the class intervals.  We used kernel density 

smoothers instead. 

4.3.3 Sensitivity Analysis 

The atmospheric predictors enter the NHMM in a nonlinear fashion.  Therefore, it is difficult 

to discern whether the low precipitation sequence is due to changes in one atmospheric 

predictor alone or a combination of predictors.  We assessed the impact of a change in the 

distribution of any one of the three key predictors (mean MSLP, north-south MSLP gradient 

and  by transforming its pre-1978 distribution to its post-1978 distribution.  For a 

given key predictor x, the transformation is described by  where  and  

denote Epochs 1 and 2, and  denotes the cumulative distribution function for 

the ith Epoch.  The transformed values of the fourth predictor (i.e., first atmospheric canonical 

variable) were determined using the  values and the pre-1978 values for the remaining 23 

predictors.  One-thousand, 20-year sequences of daily winter precipitation were generated 

from the fitted NHMM, conditionally on the 20-year sequence for each transformed 

atmospheric predictor with the pre-1978 distributions for the remaining key predictors left 

unchanged.  The statistics of the simulated weather state and precipitation sequences obtained 

were then compared with those obtained from simulations driven by the post-1978 data.  

)dDT

))(( 12 12
xFFx XX= 1x 2x

iX

2x
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4.4 Results 

4.4.1 Analysis of Weather State Sequence 

Table 4.1 reports the results of the two-sample, two-sided t-tests for the steady-state 

probability series for States 3 and 5.  There is very strong evidence against the null 

hypothesis for State 3, and the strength of the evidence is insensitive to breakpoint selection.  

Some sensitivity to breakpoint selection is evident for State 5.  Nevertheless, the strength of 

the evidence against the null hypothesis is strong to very strong.  For States 1, 2, 4, and 6, the 

P-values lie in the interval 0.087 ≤ P-value ≤ 0.798.  Thus there is little evidence against the 

null hypothesis for these states. 

Table 4.1 Comparison of mean probabilities of States 3 and 5 for Epochs 1 and 2.  

 State 3 State 5 
Breakpoint t-statistic P-value t-statistic P-value 
1974 5.313 4.64 × 10-6 -4.182 1.58 × 10-4 
1975 5.240 5.86 × 10-6 -3.621 8.35 × 10-4 
1976 5.024 1.16 × 10-6 -3.654 7.58 × 10-4 
1977 4.488 6.21 × 10-5 -3.296 0.002 
1978 4.158 1.70 × 10-4 -2.905 0.006 

Table 4.2 reports the results of the randomization tests for monthly weather state counts for 

States 3 and 5.  Some sensitivity to breakpoint selection is evident.  However, for July and 

August there is strong evidence against the null hypothesis that mean State 3 counts for 

Epoch 2 are the same as those for Epoch 1.  October is the only month for which the evidence 

against this null hypothesis is weak.  For May to August, there is some to very strong 

evidence against the null hypothesis that mean State 5 counts for Epoch 2 are the same as 

those for Epoch 1.  

Table 4.3 reports the results of the Hotelling two-sample T2-tests for the weather state 

transition probability matrices for States 2, 3 and 5.  (For States 1, 4 and 6 there is little 

evidence against the null hypothesis that the population mean vectors of the transition 

probability matrices for both Epochs are identical.)  The P-values obtained using the 

distributional assumption about the transition probability matrices and randomization are in 

essential agreement, and are fairly insensitive to breakpoint selection.  For transitions from 

State 2 there is very strong evidence against the null hypothesis that the population mean 
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vectors for both Epochs are identical.  Inspection of time series plots of )|( 23 SSP  and 

)|( 24 SSP  for 1958-1998 revealed underlying decreasing and increasing trends, respectively.  

Thus the corresponding means for Epochs 1 and 2 are quite different.  In contrast, there is 

little evidence that the transition probabilities from any state to State 2 have changed. For 

transitions from State 3 there is strong to very strong evidence against the null hypothesis.  

The mean )|( 33 SSP  for Epoch 2 is lower than that for Epoch 1, while the mean )3S|( 5SP  

for Epoch 2 is noticeably higher than that for Epoch 1.  These findings provide further insight 

into the change in frequency of State 3 in that the day-to-day persistence of State 3 has 

decreased and the frequency of the transition from State 3 to dry conditions region-wide 

(State 5) have increased during 1958-1998.  The P-values for transitions to State 3 are 

sensitive to breakpoint selection, and the level of evidence against the null hypothesis ranges 

from little to strong. There is little evidence against the null hypothesis that the probabilities 

of transitions from State 5 to any other state or the same state have not changed. However, for 

transitions to State 5 there is strong evidence against the null hypothesis: for Epoch 2 the 

, ,,1 K=j)|( 5 jSSP  ,  are higher than those for Epoch 1.  6

Table 4.2 P-values from randomization tests on monthly weather state counts for States 3 and 5.  

Break- Winter Month 
point May June July August September October 

State 3 
1974 0.016 0.002 0.002 0.002 0.013 0.109 
1975 0.012 3 × 10-4 0.003 0.002 0.003 0.024 
1976 0.015 0.013 0.002 0.002 0.003 0.054 
1977 0.015 0.008 0.006 0.004 0.012 0.073 
1978 0.011 0.010 0.004 0.007 0.003 0.050 

State 5 
1974 0.002 1 × 10-4 1 × 10-4 0.011 1 × 10-4 0.007 
1975 0.006 0.002 1 × 10-4 0.014 0.033 0.018 
1976 0.016 0.004 1 × 10-4 0.014 0.055 0.016 
1977 0.014 0.011 0.014 0.016 0.122 0.036 
1978 0.007 0.046 0.024 0.012 0.209 0.209 
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Table 4.3 Results of Hotelling two-sample T2-tests comparing the mean weather state transition 
probabilities for Epochs 1 and 2.  

Weather  Transition From State S Transition to State S 
State, S F statistic P-value* F statistic P-value* 

1974 
2 7.754 0.0001 1.834 0.124 
3 5.363 0.0009 3.838 0.0054 
5 0.632 0.677 4.123 0.0035 

1975 
2 6.828 0.0002 1.691 0.155 
3 4.199 0.0043 4.016 0.0041 
5 0.471 0.795 3.892 0.0050 

1976 
2 6.081 0.0004 2.058 0.0864 
3 5.294 0.0010 3.096 0.0166 
5 0.888 0.500 4.570 0.0019 

1977 
2 8.246 < 0.0001 1.403 0.244 
3 4.000 0.0056 2.822 0.0256 
5 0.590 0.708 3.736 0.0063 

1978 
2 8.823 < 0.0001 1.226 0.319 
3 3.536 0.011 2.263 0.0622 
5 0.503 0.772 4.311 0.0027 

* P-values based on the assumption that transition probability matrices have a multivariate normal distribution.  

Although the above results may seem to be inconsistent with those reported in Table 4.1, the 

relationship between the steady state and transition probabilities is described by the following 

system of equations: 

   (10) 
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Hence  is a nonlinear function of the components of the ith column of the transition 

probability matrix, and the effects of changes in these transition probabilities on the steady 

state probability will not take a simple form.  

)( iSP
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Plots of the winter weather state probability series for states 3 and 5 are given in Figure 4.2.  

Although interannual variability is evident in both plots across the 1958-98 period, it is 

apparent that the frequency of State 3 declined from 1958 to the mid–70s and has remained 

stationary since that time (Figure 4.2a).  In contrast, the frequency of State 5 increased 

abruptly around the early to mid–70s (Figure 4.2b) and has remained stationary since the 

apparent break.  Consider the precipitation occurrence patterns and corresponding 

composited MSLP fields for States 3 and 5 given in Figure 3.1.  If kinks in the isobars of low 

pressure systems in MSLP charts can be interpreted as indicative of the presence of cold 

fronts (Sturman and Tapper, 1996, p. 171), a reduction in the frequency of State 3 indicates a 

reduction in the occurrence of post-frontal rainfall.  An increase in the frequency of State 5 

indicates a decrease in the number of rain days across SWA.  This is due to an increase in the 

frequency of dry easterly or northeast winds around high pressure systems centred to the east 

of the region. 
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Figure 4.2 Interannual variability of steady-state probabilities for weather states 3 and 5. 

The underlying shift and trend evident in Figure 4.2 suggest that the observed low 

precipitation sequence is due to climate forcing by at least two large-scale and possibly 

interacting mechanisms.  The mid-70s break in the probability series for States 3 and 5 

roughly coincides with the timing of the observed change in the behaviour of El Niño (see 

section 4.1).  The presence of high pressure systems in the Australian region is more 

pronounced during El Niño episodes, and the change in the frequency of State 5 is consistent 

with the decline in the number of La Niña episodes relative to El Niños.  The decline in the 
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frequency of State 3 may be linked to a change in the behaviour of the Antarctic Oscillation.  

One index of the Oscillation is the first empirical orthogonal function (EOF) of sea level 

pressure (SLP) for the latitudinal band between 20 and 60º S.  Figure 4.3(a) depicts the SLP 

anomaly when the index is positive; a region of lower than usual SLP surrounds the Antarctic 

continent while regions of higher than usual SLP occur at middle latitudes.  Under these 

conditions, westerly airflow in the mid latitudes is suppressed.  Figure 4.3(b) shows the index 

time series derived from the Reanalysis record by CAR.  The index is negative in sign prior 

to the mid-70s, and positive thereafter.  Also, the index increases from high negative values 

in the early 1960s to positive values in the late 1970s.   

Inspection of Figure 3.1 suggests that States 2 and 4 also involve southwest to westerly 

airflow. As noted above, the mean transition probabilities from State 2 for Epoch 2 are 

different to those for Epoch 1.  Comparison of the composite MSLP plots for States 2 and 3 

suggests that both conform to the typical pattern of a trough between two anticyclones that is 

conducive to the development of cold fronts. Fronts separate two air masses of contrasting 

wind, temperature and density, and in the Australian region are largely due to the interaction 

of subtropical and polar air. These features are not as apparent in the composite MSLP plot 

for State 4. State 4 appears to be indicative of weak frontal systems, or frontal systems that 

are centred too far south to penetrate the hinterland. Recall that no significant change in the 

steady-state or transition probabilities for State 4 was detected.  Overall, these results suggest 

that the hypothesised linkages between the low precipitation sequence and changes in the 

behaviour of El Niño and the Antarctic Oscillation need to be subjected to a detailed 

meteorological analysis.  

4.4.2 Exploratory Analysis of Atmospheric Predictor Series 

Figure 4.4 shows mean-difference and smoothed density plots for the key atmospheric 

predictors when Epochs 1 and 2 are defined as the periods 1958–76 and 1977–98, 

respectively.  The post-1976 changes in the probability distributions of the predictors differ 

from each other.  The MSLPs for Epoch 2 are roughly equal to MSLPs for Epoch 1 plus a 

constant of 0.6 hPa.  The spread of N-S MSLP gradient for Epoch 2 is marginally larger than 

that for Epoch 1.  The distribution of  values for Epoch 2 has a longer upper tail than 

that for Epoch 1.  This suggests that when the lower troposphere is dry, it is much drier in 

Epoch 2 than in Epoch 1. 

850
dDT
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Figure 4.3 Antarctic Oscillation:  (a) pressure anomaly when the first EOF of sea level pressure is 
positive, (b) time series of the first EOF.  (Source: Peter Whetton, CSIRO Atmospheric Research.) 
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Figure 4.4 Mean-difference plots and smoothed density estimates of centred, NHMM atmospheric 
predictor series for the periods 1958–76 (Epoch 1) versus 1977–98 (Epoch 2).  In each density plot the 

density estimates for 1977-1998 are shown as dotted curves. 

4.4.3 Sensitivity Analysis 

Results from the sensitivity analysis are given in Figure 4.5.  The probability residuals for a 

particular weather state are defined herein as the difference between the ‘observed’ steady 

state probabilities for each year in the 1979-1998 period and the mean of the 1000 simulated 

probabilities for each year.  The raindays residuals are defined as the difference between the 

observed mean values of the number of raindays at each site for 1979-1998 and their 

simulated means.  The rainfall residuals are defined as the difference between the observed 

mean values of rainfall amounts at each site for 1979-1998 and their simulated means.  

Perusal of Figure 4.5 indicates that post-1978 changes in any one of the three predictors alone 

cannot explain the decline in the frequency of State 3 nor the number of rain days over SWA 

(Figures 4.5a and 4.5c).  In contrast, the increase in the frequency of State 5 can be explained 

by changes in any one of the three predictors (Figure 4.5b).  The results for mean winter 
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precipitation (Figure 4.5d) are not informative given that the NHMM simulations based on 

the 1979-98 Reanalysis data are slightly biased.  Nevertheless, it is apparent that the changes 

in weather state frequency and precipitation across SWA are due to changes in a combination 

of atmospheric predictors rather than a single predictor. 
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Figure 4.5 Box plots of results from sensitivity analysis: (a) and (b) show differences between 
observed and mean simulated weather state probabilities, (c) shows differences between mean observed 
rain days and mean simulated rain days for all 30 sites, and (d) shows the relative percentage error in 
mean simulated precipitation across the 30 sites.  P1, P4 and P26 denote results for transformed mean 

MSLP, north-south MSLP gradient and  respectively, and 79-98 denotes results when the post-
1978 data for all predictors are used to drive the modified NHMM. 

,dDT 850

4.5 Discussion 

Other workers have investigated the causes of the low precipitation sequence over SWA.  

Allan and Haylock (1993) found that wet and dry periods over most of the region are 

associated with enhanced and weaker mean westerly airflow, respectively.  Smith et al. 

(1999) noted an increase in winter MSLPs over SWA since the late 1960s and a decrease in 

cyclonic activity immediately south of WA over the same period.  Our results are consistent 

with these earlier findings in that comparing the last twenty years (Epoch 2) with the previous 

twenty years (Epoch 1): 
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• Winter MSLP for Epoch 2 is equal to that for Epoch 1 plus an additive shift of 0.6 hPa 

(Figure 4.4). 

• There has been a significant reduction in the number of days when precipitation is 

generated by westerly airflow (Figures 3.1a and 4.2). 

• There has been a significant increase in anticyclone activity (Figures 3.1b and 4.2). 

Tapp and Cramb (2000) have speculated that changes in atmospheric circulation that are not 

well reflected by changes in MSLP may also affect regional precipitation.  We have found 

that when the lower troposphere has been dry in Epoch 2, there is a tendency for it to have 

been drier than in Epoch 1 (Figure 4.4).  We have also demonstrated that the low 

precipitation sequence is due to a combination of changes in sea level pressure and low-level 

humidity variables rather than a single pressure variable alone (Figure 4.5). 

4.6 Conclusions 

Our results indicate that: 

• There is strong to very strong evidence of changes in the synoptic patterns over SWA 

during the last 40 years. 

• There are marked reductions in the incidence of precipitation generated by moist 

westerly and south-west winds, and the number of rain days due to an increase in the 

frequency of high pressure systems centred to the east of SWA. 

• The changes in weather state frequency, and hence precipitation occurrence and amount, 

are due to a combination of changes in several atmospheric variables (mean MSLP, 

north-south MSLP gradient and  rather than any one predictor. )dDT 850

We have speculated that the large-scale mechanisms responsible for the low precipitation 

sequence may be changes in, and a possible interaction between, the behaviour of El Niño 

and the Antarctic Oscillation over the period covered by the Reanalysis dataset.  This 

hypothesis should be subjected to detailed meteorological analysis. 
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5. LOW FREQUENCY CLIMATE VARIABILITY 

5.1 Introduction 

Previous work by CSIRO Atmospheric Research (IOCI, 1999) has indicated that the 

observed low precipitation sequence for SWA is unusual in a historical and global context.  

In this section, we attempt to place the observed sequence in a regional context by applying 

the NHMM to the daily atmospheric fields produced by the 1000-year, CSIRO Mk 2 coupled 

GCM run.  This approach produces a daily precipitation sequence of length 1000 years for 

each of the 30 sites in SWA (Figure 2.1 and Table 2.1). 

Consider the 40-year period from 1958 to 1997.  One way of characterising the recent 

precipitation decline over SWA is to compute the difference between the mean precipitation 

across all 30 sites for the period 1958 to 1977 and the mean precipitation across all 30 sites 

for 1978 to 1997.  This difference will hereafter be referred to as the observed mean 

difference.  We estimate the probability of a mean difference that is at least as severe as the 

observed as follows: 

• For each of the 961 periods of length 40 years in the 1000-year GCM run, compute a 

simulated mean difference by subtracting the mean precipitation for the last 20 years 

across all 30 sites from the mean precipitation for the first twenty years. 

• Collate and sort the 961 simulated mean differences. 

• Compare the observed mean difference to the empirical quantiles of the distribution of 

the simulated mean differences. 

5.2 Results and Discussion 

Figure 5.1 compares the distribution of simulated mean differences with the observed mean 

difference (27.2 mm).  About 9.5% of the simulated mean differences are greater than the 

observed mean difference, indicating that the observed low precipitation sequence is 

uncommon but not extreme. 

However, the above finding is subject to three caveats: 
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• It assumes that the 1000-year GCM run produces a credible simulation of low-frequency 

changes in atmospheric circulation over SWA. 

• It assumes that the parameters of the NHMM are stationary over the length of the GCM 

simulation. 

• The GCM simulation is not a reconstruction of climate variability over the last 1000 

years, as temporal variations in solar forcing, volcanism and the atmospheric 

concentration of carbon dioxide over that period have not been accounted for.  That is, the 

simulation is a scenario derived for present day conditions only. 
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Figure 5.1 Comparison of the observed mean difference and simulated mean differences. 
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6. CONCLUSIONS 

6.1 Summary of the Investigation 

Our investigations for Second Research Phase of the Indian Ocean Climate Initiative (IOCI) 

have focused on: 

• Split-sample testing of an extended nonhomogeneous hidden Markov model (NHMM) 

for daily winter (May to October) precipitation across a network of 30 stations scattered 

throughout southwest Western Australia (SWA). 

• Using the NHMM and observed atmospheric fields to discern the causes of the low 

precipitation sequence in SWA at the synoptic scale. 

• Deriving an estimate of the probability of the observed low precipitation sequence over 

the last two decades. 

Our main findings are as follows: 

• Initial testing revealed that the NHMM did not capture the dynamic behaviour of the 

atmosphere at intra-seasonal time scales.  A modified version of the NHMM 

incorporating an augmented atmospheric predictor set was shown to resolve most of the 

performance deficiencies of the original model.  This suggests that provided coupled 

ocean-atmosphere GCMs could provide reasonable interseasonal forecasts of the large-

scale atmospheric circulation over SWA, reasonably reliable forecasts of monthly 

precipitation at sites across the region can be obtained. 

• A sudden change in spatial precipitation occurrence patterns occurred in the mid 70s.  

Changes in the location and strength of depressions and anticyclones, and the moisture 

content of the lower troposphere, are evident. 

• The low precipitation sequence over the last 20 years is due to changes in a combination 

of several atmospheric variables rather than a change in any one variable. 

• Within the winter half-year, the number of days when the entire southwest is essentially 

dry is larger than in the past due to the increase in the number of days when anticyclones 

141 



Bates, Charles & Campbell 

are centred to the east of the region.  This may be due to the change in the behaviour of 

El Niño that occurred around 1976.  

• There has been a reduction in the frequency of precipitation in coastal regions due to a 

reduction in westerly airflow.  There is a declining trend in the frequency of this 

precipitation pattern from 1958 to the mid-70s, with some evidence of oscillations about 

the trend.  The trend has been absent for the period from the mid-70s to present.  This 

may be due changes in the Antarctic Oscillation and an interaction between the 

Oscillation and El Niño.  

• In a regional context, the low precipitation sequence over the last 20 years is uncommon 

but not extreme. 

6.2 Future Research 

Our proposed research plan for Phase 5 of IOCI is as follows: 

• Downscaling of a sequence of staged, interseasonal climate forecasts using CAR’s 

coupled ocean-atmosphere GCM, and comparison of downscaled precipitation with 

observations.  This work will reveal the lead time for reliable forecasts (if any), and any 

so-called ‘predictability barriers’ during the winter half-year. 

• Further investigation of the effects of El Niño and the Antarctic Oscillation on winter 

precipitation over SWA. 

• Development of an air temperature module for the NHMM.  This module will simulate 

minimum daily temperature and temperature range (maximum minus minimum daily 

temperature). 

Our proposed research linkages for Phase 5 are: 

• CSIRO Atmospheric Research – deriving interseasonal forecasts of monthly precipitation 

over SWA by downscaling a staged sequence of coupled CSIRO Mark 3 GCM 

simulations, and obtaining further insight into the relationships between key atmospheric 

predictors and large-scale forcing mechanisms. 
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• Bureau of Meteorology (Research Centre and Perth Regional Office) – collaboration on 

the final synthesis report for policy makers. 

• University of Washington, Seattle – consultation on strategic issues related to further 

development of the NHMM. 

• CSIRO Mathematical and Information Sciences – advice on advanced statistical issues 

and obtaining further insight into the relationships between key atmospheric predictors 

and large-scale forcing mechanisms. 
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APPENDIX A - GLOSSARY 

General circulation The global-scale wind system that largely determines the broad 
climate patterns on Earth. 

Dew point temperature Temperature to which air needs to be cooled for condensation to 
occur at a given atmospheric pressure and mixing ratio. 

Downscaling  Quantification of the relation of local- and regional-scale climate 
variables to larger scale atmospheric patterns.  These patterns 
may be observed or simulated by dynamical climate models. 

Dry spell A sequence of consecutive days during which daily precipitation 
remains below 0.3 mm. 

Front The transition zone or interface between two air masses of 
contrasting wind, temperature and density. 

Geopotential height The work that must be done against gravity to raise a mass of 
1 kg from sea-level to the level of interest in the atmosphere. 

Markov process A stochastic process in which the 'future' is determined by the 
'present' and is independent of the 'past'. 

Mean Sea Level Pressure Total atmospheric pressure at the average height of the sea for all 
tidal stages over a 19-year period. 

Mixing ratio Ratio of the mass of water vapour to the mass of dry air in a 
given volume of air. 

Precipitation Any and all forms of water that falls from clouds and reaches the 
earth's surface. 

Quantile The value of a variable below which a certain proportion of the 
variable values will fall. 

Wet spell A sequence of consecutive days during which daily precipitation 
equals or exceeds 0.3 mm. 
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APPENDIX B - LIST OF ACRONYMS 

BIC Bayesian information criterion.  

CAR CSIRO Atmospheric Research  

CCA Canonical correlation analysis 

CLW CSIRO Land and Water. 

EOF Empirical orthogonal function 

GCM General circulation model. 

GMT Greenwich Mean Time: the 24-hour time scale used throughout the scientific 
and military communities.  Other names for this time measurement are 
Universal Time Coordinate (UTC) and Zulu (Z). 

CSIRO9 Spectral 9-level general circulation model developed by CSIRO Atmospheric 
Research. 

IOCI Indian Ocean Climate Initiative. 

MSLP Mean sea level pressure. 

NCAR National Center for Atmospheric Research. 

NCEP National Centers for Climate Prediction. 

NHMM Nonhomogeneous hidden Markov model 

SLP Sea level pressure 

SST Sea surface temperature. 

SWA Southwest Western Australia. 
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Summary 
We summarise in this report the Indian Ocean Climate Initiative’s (IOCI) work to date to 
develop a statistical procedure for modelling nonlinear climate phenomena. This 
procedure is motivated by the physical idea of a switching mechanism that causes 
different climate states to prevail for some period of time. There is a range of evidence to 
support these ideas, much of which was discussed in the Phase I report, and will be 
further discussed here. A simple example is the well-known phenomenon in the tropics 
where enhanced convection can occur when sea surface temperatures are greater than 
about 29°C, so different rainfall regimes apply either side of this threshold temperature. 

A key feature of the procedure that we have developed is that it is not based on the 
typically strong statistical assumptions needed to perform a text book analysis. The 
statistical assumptions required are instead implied by the physical paradigm. We call 
this procedure a Bayesian threshold model, for reasons that will become clear below. 

At the conclusion of this phase of IOCI we have developed and tested the Bayesian 
threshold model using monthly rainfall data at Rottnest Island and Manjimup. This 
represents the diversity of Southwest WA to some extent; Rottnest Island has been 
included in particular because there seems to be little scope for land-use change to have 
impacted rainfall patterns at this location. This has required some statistical research to 
underpin the Bayesian threshold model, and the detailed development is contained in a 
manuscript that has been submitted for publication. The manuscript is attached in 
Appendix C to this report. The method is relatively easy to use and can identify important 
predictors and the key lags at which they act to influence a climate variable, such as 
rainfall. It is possible to examine the impact of different switching variables and identify 
the likely number of thresholds in the switching variable, although this is the subject of 
ongoing work as it is currently somewhat ad hoc. 

Whilst the main purpose of the case studies to date has been to support the development 
of the Bayesian threshold model, some interesting physical links have been observed. We 
cite them as evidence at this stage that the model is behaving as we would expect, rather 
than providing great insights. Searching for leading rainfall indicators is necessarily 
collaborative in nature, not simply a statistical modelling exercise, but can now 
incorporate a new nonlinear statistical tool. 

Clear indications of switching behaviour have been found in the rainfall time series. For 
Rottnest Island no connection with monthly rainfall and the El Niño-Southern Oscillation 
(ENSO), as measured by the Southern Oscillation Index (SOI), has been found. A 
seemingly strong link has been found at Manjimup however. We have also examined the 
use of sea surface temperature gradient in the mid-Indian Ocean as a switching variable. 
There is evidence that it plays a role in switching rainfall regime at both sites considered, 
but the relationship appears to be especially strong at Rottnest Island, providing a leading 
indicator of winter rainfall. 

If we conceive of a ‘true’ switching mechanism, it seems unlikely that this will be a very 
simple process. Physical intuition suggests that a combination of patterns in the Indian, 
Southern and Pacific Oceans is more likely to cause a switch in rainfall regime. This is 
because the climate system is driven by interaction between oceans as well as the oceans 
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and the atmosphere. Preliminary work suggests that the Bayesian switching model can 
readily be adapted to a more general framework that will facilitate the search for such 
climate interactions. We intend to pursue this as time permits. 

Our key priority for the last phase of IOCI is to apply the Bayesian switching model, and 
our statistical expertise more generally, to a range of case studies developed in 
collaboration with the contributing partners. 

 

Key Points: 

• We have developed a physically motivated statistical model (‘Bayesian switching 
model’) for modelling nonlinear climate processes. 

• Changes between climate regimes are triggered by a switching variable, and 
alternative switching variables can be compared. 

• The Bayesian switching model can identify good predictors and the lags at which 
they influence climate variables, such as rainfall. 

• We have reached the point where a nonlinear time series approach can be applied to 
practical problems. 

• There is some evidence that SOI and mid-Indian Ocean SST gradients play a role in 
switching between rainfall regimes. This is cited at this stage as evidence that the new 
nonlinear approach is producing sensible results, rather than new insights per se. 

• Interactions between climate processes are likely to influence rainfall in Southwest 
WA. Some reasonably straightforward extensions to the Bayesian switching model 
will facilitate the search for subtler climate teleconnections arising from such 
interactions. 

• The focus of future work will be the development of case studies with IOCI’s 
contributing partners. 

 

Suggested Reading 
The work summarised in this report represents an overview of an statistical research 
effort. For most readers there is more technical detail than is necessary to understand the 
methods used and the progress made. The technical details are important for 
completeness however. We suggest two paths through this report: 

 

For readers interested in the statistical research issues: Read in the order presented, but 
a first reading of Appendix C is appropriate after §2. 

 

For readers not interested in the statistical research issues: §2.5 contains an overview of 
the technical material and so is optional but is of general interest; §3 is optional as it 
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contain some substantial technical material; §4.2 and Appendix C should be skipped 
completely. 

1 Introduction 
Many advances in climate forecasting have been brought about by the statistical analysis 
of available data. These advances occur when the analysis of climate data poses questions 
that encourage us to new physical understanding; when we can achieve this then there is 
a solid foundation on which to build better climate forecasting systems. Given the 
complex, inter-related nature of the climate system this can be a very difficult process in 
practice. 

The bulk of statistical climatology work reported in the literature (see: Campbell et al., 
IOCI Phase I Report) uses conventional statistical methods to explore for physical 
relationships. Such techniques often make strong assumptions about the nature of the 
physical systems being studied. For example, it is typically assumed that linear 
relationships exist between variables of interest and that the physical processes do not 
change their behaviour with time. The gap between what the statistical methods can 
deliver and the true nature of the physical systems being studied must be bridged by a 
good deal of intuition. This is unfortunate because it is very likely that many important 
physical questions are never posed because the statistical “searchlight” is inadequate. 

IOCI is quite unique in that a statistical research capability is woven into the initiative. 
The objective of our work is to examine the nature of climate processes and to develop 
statistical methods appropriate for the analysis of data arising from such processes. Based 
on our work in Phase I it became clear that there is a need to develop methods that can 
model nonlinear climate phenomena.  

We have undertaken to develop a statistical methodology that will also provide 
uncertainty measures for forecasts. That is, rather than just giving a rainfall estimate we 
will provide a probability distribution for a rainfall forecast. We have been using monthly 
rainfall to develop our methods because it is such a difficult quantity to model, but do not 
limit our scope to rainfall.  It is our intention to identify relevant applications of the 
methods developed in partnership with IOCI’s contributing partners. 

In this report we document the work to date in the statistical method development. In 
section 2 we describe the physical rationale for the methods being developed; section 3 
describes case studies of monthly rainfall at Rottnest Island and Manjimup that have been 
used to test the methods as they’re developed. A discussion of our results to date is given 
in section 4 with some conclusions in section 5. 

2 Year 3 Development Path 

2.1. Probability Distributions for Forecasts 
There are two key features of a climate forecast that a decision-maker in climate-
impacted sector must balance in reaching their decision. First, the climate pattern 
forecasted and, second, the uncertainty associated with the forecast. Different decisions 
are required for different levels of uncertainty. For example, if a forecast is known to be 
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highly accurate and very clearly forecasts boom conditions for wheat farmers say, then a 
sensible decision might be to expand wheat production. In a situation of greater 
uncertainty, with the same forecast climate pattern, to manage risk in a sensible fashion it 
is advisable to maintain a more balanced crop portfolio. 

To provide a complete statement of uncertainty we need to integrate (assimilate) 
information from a variety of sources. These encompass uncertainties in available climate 
data, the forecast system used and the availability of expert knowledge. Such expert 
knowledge would typically include both a meteorological and a decision-maker’s 
perspective. A final integrated statement of uncertainty would be a probability 
distribution for a climate output- such as next year’s wheat production, to continue the 
above example. 

The Bayesian statistical framework is ideal for integrating uncertainty information, so we 
have chosen to develop our methods within the Bayesian framework. The Bayesian 
approach begins with a statement of knowledge prior to the collection of data (“prior 
knowledge”). This information is expressed as a probability distribution, allowing us to 
specify quantities such as “most likely value,” “average value” etc. Our uncertainty can 
then be expressed via the spread of prior knowledge. The prior knowledge is then 
combined with the data via a mathematical rule known as Bayes’ Theorem to form an 
integrated expression of uncertainty posterior to data collection (“posterior knowledge”). 
This is illustrated heuristically in Figure 1. We see that the data have greatly reduced 
uncertainty, as the posterior is much more concentrated on a particular value than the 
prior. 

In addition to providing a powerful scientific framework for drawing inferences from 
data there are also a number of technical advantages. In particular, in climate prediction 
we are most concerned with finding good predictors and the time lags at which these 
predictors influence climate. In comparison with more conventional statistical methods 
the Bayesian framework offers much more flexibility in identifying good predictors with 
fewer technical mathematical concerns. 
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Posterior Knowledge

 

Figure 1 The Bayesian process of integrating data and expert 
opinion. 

 

2.2. Climate Switching Models 
Much of the statistical analysis undertaken in climate research uses so-called linear 
statistical techniques to identify climate processes. There is however significant evidence 
that the climate system can behave in strikingly nonlinear ways. For example, Graham 
and Barnett [1987] show that in the tropics enhanced convection occurs at Sea-Surface 
Temperatures (SSTs) greater than about 29ºC. This implies that different rainfall 
forecasting systems apply depending on whether SST is above or below the threshold 
temperature of 29ºC. In general there may well be a delay between the threshold SST 
being reached and the resulting switch in rainfall regime.  In each rainfall regime we 
assume that different linear climate processes apply. This is depicted in Figure 2 with a 
linear approximation superimposed for reference. 
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A similar result was found by Hsieh et al. [1999] in the context of predicting Canadian 
prairie wheat yield from Pacific Ocean SSTs. If a linear system applies then SST 
anomalies in low and high yield years should be of similar magnitude, but with opposite 
signs. Instead they found major asymmetries in SST anomalies and that only low yields 
are predictable from SST anomalies. If this information is ignored then a potentially 
misleading forecast system will result; at best it will have little skill. 

Palmer [1999] examined climate prediction from a nonlinear perspective, providing 
theoretical justification for a climate system that resides in equilibrium states for periods 
of time, subject to occasional rapid switching between states. Palmer found some 
evidence in available data to support this view. The threshold SST idea described above 
is consistent with this view, with SST providing the switch between states. 

There is therefore a strong argument for developing statistical models incorporating the 
concept of threshold behaviour. Such models will allow a more physically motivated 
analysis of available data than has hitherto been the case. The key research activity of the 
CSIRO Mathematical & Information Sciences (CMIS) group has been to develop a 
statistical method for identifying good predictors in a Bayesian nonlinear framework. The 
results of the work to date are described in section 3 where the monthly rainfall case 
studies are described. The theoretical work underpinning the case studies is described in 
the manuscript appended to this report. 

2.3. Incorporating Ocean-Atmosphere Interactions 
Rainfall arises from an interaction between the oceans and the atmosphere. This means 
that information on the atmosphere or oceans alone my not be sufficient to forecast 
climate; it may be necessary to have knowledge of both. In particular there may be 
combinations of conditions in the oceans and atmosphere that provide a leading indicator 
of enhanced rainfall or drought. It may also be the case that combinations of past ocean 
conditions are more important than individual SST values. 

SST

llRainfa

Linear
Approximation

 

Figure 2 Nonlinear relationship between Rainfall and SST. 
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The interaction concept is a very powerful one. An example of a statistically significant 
interaction effect is shown in Figure 3. In this case we require SST to be high both 3 and 
6 months prior to winter to experience high winter rainfall. Whilst SST 6 months ago is a 
leading indicator of rainfall it must be sustained until 3 months before winter to produce 
high winter rainfall. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Example of an interaction effect in SST influencing rainfall. 
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Interaction effects of this type can be very difficult to detect in climate data. An approach 
to doing this is to include a product term “SST (-6 months) × SST (-3 months)” in the 
models we fit to the data. An approach to this problem is currently under development for 
application in the final stage of IOCI. 

In the context of IOCI’s work, Indian, Pacific and Southern ocean conditions as well as 
atmospheric conditions are of great relevance. Australia’s island continent status is 
uniquely complex in this regard, so interactions between 3 oceans and the atmosphere are 
clearly relevant to climate prediction. 

2.4. Modelling Approach 
It is common practice to model deviations (“anomalies”) from long term climate trends in 
preference to modelling the raw data. The main purpose for this is so that predictors 
beyond simple climatological averages can be sought. From a nonlinear perspective the 
calculation of anomalies carries the risk that important information might be lost. For 
example, it could well be that different climate regimes have different seasonal patterns. 
It is also the case that the method used to remove long term trends can introduce features 
of its own. 

We have chosen not to model anomalies. Instead we seek to capture the seasonal pattern 
of, e.g. rainfall, by incorporating rainfall as the leading term in the model. Subsequent 
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terms in the model, such as SST, will therefore only be included if they explain rainfall 
variation additional to the rainfall history itself. The modelling approach may be 
summarised as: 

 

( ) ( ) (Rain today Rain history SST additional to rain history= + ) . 

This applies to each regime identified, so different terms can be selected in each regime. 

2.5. Development of Methodology 
Within a nonlinear, climate-switching framework we have identified a need to provide 
probability distributions for forecasts and to identify the time lags at which important 
predictors influence climate. These requirements present a challenging statistical 
problem. An approach developed by CSIRO Mathematical and Information Sciences is 
described in detail in the manuscript in Appendix C. This manuscript is still in peer 
review at the time of writing. 

For the interested reader, the approach uses an extended Markov chain Monte Carlo 
(MCMC) approach known as Reversible Jump MCMC (RJMCMC). In MCMC we set-up 
a carefully defined random walk over the parameter space of a particular model in order 
to summarise the posterior distribution of the model’s parameters. RJMCMC extends the 
random walk to range over a collection of models. In this way we can conduct model 
selection and parameter estimation simultaneously. 

3 Case Studies 

3.1. Description of Data 
Monthly rainfall data (mm) for Rottnest Island and Manjimup were selected from Bureau 
of Meteorology’s high quality data set. Manjimup has been selected as representative of 
an inland site in the Southwest, whilst Rottnest Island has been selected since it is free of 
any concerns regarding land-use change. For Manjimup we used monthly rainfall data 
from 1950 to 1993 for model fitting. In the case of Rottnest Island, rainfall data were only 
available until 1992 at the time of this study. Data from 1950 were used so that credible 
use of sea surface temperature could be made. 

Some pre-processing of the rainfall data has been undertaken. First, rainfall data are 
typically highly skewed which can cause large rainfall events to have undue influence of 
the model-fitting procedure. In particular, linear time series models will tend to have an 
artificially high order in such circumstances. This could bias the comparison of linear 
with nonlinear models. To avoid this we have first transformed the rainfall data to be 
more nearly symmetric (using a Box-Cox transformation). As an aid to numerical 
stability all of the time series used were scaled to have mean 0 and standard deviation 1. 

One of the switching variables we have used is the SST gradient at Point 27, 3 (Bureau of 
Meteorology naming convention) in the mid-Indian Ocean. This measures the north-
south difference in SST at this point. This has been found by to have substantial 
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correlation with Manjimup rainfall [Lynda Chambers, pers. comm.]. The Bureau of 
Meteorology supplied the SST gradient data used in our case study, as were the SOI data. 

3.2. Manjimup Monthly Rainfall 

3.2.1 Predicting Rainfall From The Rainfall History Only 
As a first step we fit a threshold model to the monthly rainfall data alone, so we assume 
that a threshold exists in the rainfall time series rather than in SST. This is a reasonable 
starting point for investigating the performance of the threshold approach by seeking 
evidence of nonlinearity in the rainfall time series. 

To fit a threshold model we must determine the number of thresholds that are present. In 
Figure 4 we present a diagnostic1 for choosing the appropriate number of thresholds. On 
the vertical axis we plot a measure of the support2 in the data for a threshold parameter 
taking a value on the horizontal axis. We expect to see a cloud of points with a noisy 
spike at a value where there is support for a threshold. In this case there is a distinct spike 
at a value of about –1.1. This suggests that there is evidence for a low rainfall regime and 
a normal to high rainfall regime. In the analysis to follow we assume the presence of 1 
threshold. 

                                                 
1 In practice a number of these plots are produced at different scales. The final figure is focused on the 
region in which the threshold appears to be located. 
2 The likelihood of the time series plotted as a function of the threshold parameter. 
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Figure 4 Diagnostic plot for choosing the number of thresholds and their 
approximate locations. 

 

We can calculate some simple summaries of the resulting model fit. To get some insight 
into how well the procedure is performing we can use the resulting parameter estimates to 
calculate 1-month-ahead predictions for each observed monthly rainfall amount,3 and the 
result is shown in Figure 5. We see that the correlation between the predicted and 
observed values is 0.782. This is a reasonable performance given that we have only used 
the rainfall history. In general the approach under-predicts the largest observed events. 
This is not unexpected, and it is likely that a predictor such as sea surface temperature 
will be required to predict such events. 

                                                 
3 We must exclude a number of values at the beginning of the time series because the model uses past 
values of rainfall to forecast the future. This means that we cannot predict the first few values of the time 
series. 
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Figure 5 1-month-ahead predictions of monthly rainfall at Manjimup. The 
correlation between predicted and observed rainfall is 0.782. 

 

An important feature of the method we are developing is that it identifies the important 
time lags essentially automatically. The parameter estimates are shown in Table 1. At this 
stage the method retains all lags up to the longest, so we present the statistically 
significant terms only; the estimated model orders correspond to the model having the 
highest probability. The credibility intervals quoted for individual parameters incorporate 
model uncertainty4 by including competing models in the calculation, not just the model 
having highest probability. Notice first that the high and low rainfall regimes are quite 
different, having time lags of 6 and 16 months respectively. The high rainfall regime also 
has a relatively complicated structure. This is an important point: a linear fit may be able 
to produce a similar global fit, but is likely to perform poorly within a particular rainfall 
regime. The variance parameter is more clearly defined in regime 2 because there are 
more observations than in regime 1, which is quite typical of threshold models. 

 

                                                 
4 Since we don’t know the correct predictors to use we need to account for this important source of 
uncertainty. 
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Parameter 

 
Estimate 

95% Credibility 
Interval 

 Threshold -1.11 -1.21, -1.01 

Order 6 4, 7 

Intercept -0.261 -1.13, 0.639 

Lag-4 -0.332 -0.649, -0.0332 

Lag-6 -0.186 -0.510, 0.000 

 

Regime 1:
‘Low’ Rainfall

Variance 0.54228 0.38445, 0.74765 

Order 16 14, 17 

Intercept -0.0188 -0.0843, 0.051 

Lag-1 0.232 0.126, 0.348 

Lag-4 -0.139 -0.231, -0.0457 

Lag-5 -0.0924 -0.180, -0.00445 

Lag-7 -0.105 -0.198, -0.00515 

Lag-11 0.179 0.0797, 0.273 

Lag-13 0.242 0.143, 0.340 

Lag-14 -0.0902 -0.190, 0.000 

Lag-16 -0.0756 -0.192, 0.000 

 

 

 

 

 

Regime 2:
‘Normal/High’  

Rainfall  

Variance 0.38454 0.33614, 0.44096 

Table 1 Model-averaged parameter estimates with 95% credibility intervals. Only 
statistically significant parameters are shown, correct to 3sf except for variance 
parameters which are shown correct to 5sf. 
 

For comparison with the threshold model we have also fitted a conventional linear time 
series model. The 1-month-ahead predictions are shown in Figure 6, with a correlation 
between predicted and observed values of 0.785 with an order 20 model. Notice that this 
does not include an intercept term, which we always include in the nonlinear model 
because such parameters can help to model highly volatile time series. Overall the 
number of parameters in this case is essentially the same, with the same global 
performance. Interestingly the order of the linear model is higher than for either of the 
rainfall regimes identified by the threshold model. This is in keeping with the concepts 
illustrated in Figure 2: in order to achieve the same overall quality of fit a higher order 
model is required. In reality there seems to be evidence for different rainfall regimes 
having different physical characteristics. 
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Figure 6 Results from fitting a conventional linear autoregressive model 
(order 20); the correlation between 1-month-ahead predictions and standardised 
monthly rainfall is 0.785. 

 

3.2.2 Predicting Rainfall Using The Southern Oscillation Index (SOI) As A 
Switch 

Nonlinear modelling of the rainfall time series in isolation has provided evidence for 
climate switching. However, it seems unlikely that rainfall itself is the cause of the 
switching behaviour. One possibility is the El Niño-Southern Oscillation (ENSO), as 
measured by the Southern Oscillation Index (SOI). However, it is likely that the impact 
of SOI on southwest WA rainfall will be delayed. We have used a delay of 1 month in the 
first instance to examine this issue. 

A stable threshold seemed to be present at around +1.5, so we examined the threshold 
diagnostic plot in this vicinity (Figure 7). There is clear support for a threshold at 
approximately +1.7, with a rapid drop in support below +1.6 and above +1.8. 
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Figure 7 Diagnostic plot for choosing the number of thresholds and their 
approximate locations for Manjimup rainfall using SOI as the switching 
variable. 

 

The 1-month ahead predictions obtained are shown in Figure 8; we see that there is a 
correlation of 0.788 between the observed and predicted values. The corresponding 
parameter values are shown in Table 2. The structure of the fitted model is remarkably 
similar to the rainfall-only model fitted above, particularly the ‘Normal/High’ rainfall 
regime. It is therefore very tempting to suggest that SOI plays a physical role in rainfall at 
Manjimup.  
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Figure 8 1-month-ahead predictions of monthly rainfall at Manjimup, 
using SOI as the switching variable. The correlation between predicted and 
observed rainfall is 0.788. 
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Parameter 

 
Estimate 

95% Credibility 
Interval 

 Threshold 1.74 1.61, 1.82 

Order 16 14, 17 

Intercept -0.00965 -0.0639, 0.0454 

Lag-1 0.203 0.114, 0.295 

Lag-4 -0.163 -0.254, -0.0731 

Lag-7 -0.0918 -0.183, -0.00469 

Lag-11 0.150 0.0566, 0.240 

Lag-13 0.234 0.146, 0.326 

Lag-14 -0.0943 -0.181, -0.000874 

Lag-16 -0.114 -0.210, 0.000 

 

Regime 1:
‘Low’ SOI

Variance 0.39108 0.34085, 0.44835 

Order 5 1, 7 

Intercept 0.158 -0.360, 0.587 

Lag-4 0.505 0.000, 1.24 

Lag-5 -0.364 -1.00, 0.000 

 

Regime 2:
‘High’ SOI  

Variance 0.65143 0.25265, 1.5537 

Table 2 Model-averaged parameter estimates with 95% credibility intervals for 
Manjimup rainfall using SOI as the switching variable. Only statistically significant 
parameters are shown, correct to 3sf except for variance parameters which are shown 
correct to 5sf. 
 

In this case it seems that low rainfall in Manjimup is associated with large positive values 
of SOI, which is an indicator of El Niño events (Figure 9), although there is a clear 
exception to this rule.  The influence of ENSO on Northern and Eastern Australia is well 
known, but is a less recognised influence on the climate of Western Australia. On the 
evidence of this analysis it seems that quite extreme El Niño events can influence rainfall 
in Manjimup- the threshold for SOI being at +1.74 standard deviations to cause a low 
rainfall regime to be initiated. This does mean however that relatively few observations 
are available to characterise this regime. 
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Figure 9 Distribution of Manjimup rainfall for the two SOI regimes. 

 

The dates and rainfall amounts corresponding to the ‘High SOI’ regime are shown in 
Table 3, with runs of consecutive months highlighted. The exceptionally high rainfall 
event in the high SOI regime corresponds to August 1955. There is a run of high SOI 
values in April-May 1971 and August-October 1975. In general the events are scattered 
through the calendar year with all seasons represented; the months not present are March, 
June, July and November. It is interesting to note that the core winter rainfall months of 
June and July are not present, although there are of course relatively few observations in 
the ‘High SOI’ regime. 

In the analysis so far a delay of 1 month in the influence of the switching variable has 
been assumed. With a large scale effect such as ENSO it is worth looking for a longer 
delay. Analysis of a delay of 3 months gave very similar results to those presented above, 
although the SOI threshold was found to be somewhat lower at +1.57. The threshold 
framework is not ideally suited to searching for delayed threshold effects. However, the 
extension noted in section 2.3 for incorporating interactions is much more suited to such 
a search. This issue will be explored further. 

In experiments using SOI as a predictor in the model it was found that parameter 
estimates were less stable than when SOI was used only as a switching variable. Whilst 
there was some evidence that SOI helps to explain the historical data, it does not seem to 
provide any additional predictive capability, except as a switching variable. 
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Year 

 
Month 

Standardised 
Rainfall 

1955  
1970  
11997711  
11997711  
1973  
1974  
1974  
11997755  
11997755  
11997755  
1976  
1988  
1988  
1989 

August  
December   

AApprriill   
MMaayy  

December   
February   

April   
AAuugguusstt      

SSeepptteemmbbeerr    
OOccttoobbeerr   
January  
October  

December   
May 

2.61340  
-1.90830  
--00..5500119988      
00..8855550077  

-1.57610  
-0.57156   
0.34738 
0.3399666677      
00..5544774477    

--00..2288777755   
0.22630   
0.15450  

-1.26000   
0.38692 

Table 3 Dates and rainfall amounts corresponding to the 
‘High SOI’ regime. 

 

 

3.2.3 Predicting Rainfall Using SST Gradient As A Switch 
The threshold diagnostic plot is shown in Figure 10. There is a clear clustering around –
1.5, although there seems to be some uncertainty in the location of this threshold given 
the smear of points towards and beyond –2.0. This suggests that the threshold is not 
completely stable. Indeed there were signs of some instability during the course of the 
subsequent analysis, which requires further investigation. 

1-month ahead predictions are shown in Figure 11 below. The correlation between 
observed and predicted rainfall is 0.789, which is comparable to the other models fitted to 
Manjimup rainfall. Note that the low-SST gradient regime is of zero order; that is, rainfall 
in this regime is just a random scatter with no correlation through time. The predicted 
rainfall therefore does not vary in time and is the estimated intercept in regime 1 (-0.809). 
The full set of parameter estimates used to produce Figure 11 are shown in Table 4.  
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Figure 10 Diagnostic plot for choosing the number of thresholds and their 
approximate locations for Manjimup rainfall, using SST gradient as the 
threshold. 
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Figure 11 1-month-ahead predictions of monthly rainfall at Manjimup 
using SST gradient as the switching variable. The correlation between predicted 
and observed rainfall is 0.789. 
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Parameter 

 
Estimate 

95% Credibility 
Interval 

 Threshold -1.59 -2.02, -1.15 

Order 0 0, 1 

Intercept -0.809 -1.09, -0.286 Regime 1:
Low SST gradient Variance 0.57279 0.35474, 1.0464 

Order 16 13, 18 

Intercept 0.00941 -0.0522, 0.0708 

Lag-1 0.200 0.105, 0.295 

Lag-4 -0.153 -0.241, -0.0578 

Lag-5 -0.0998 -0.192, -0.00922 

Lag-7 -0.103 -0.190, -0.013 

Lag-13 0.226 0.135, 0.313 

Lag-16 -0.0916 -0.193, 0.000 

 

 

Regime 2:
High SST gradient  

Variance 0.38890 0.33503, 0.44810 

Table 4 Model-averaged parameter estimates with 95% credibility intervals. 
Only statistically significant parameters are shown, correct to 3sf except for variance 
parameters which are shown correct to 5sf. 
 

The rainfall distributions in each of the SST gradient regimes are shown in Figure 12. 
The low SST gradient regime is clearly associated with low rainfall. Considering the 
parameter estimates in Table 4 once again, there are clear similarities with the previous 
fitted models in the structure of the normal to high rainfall regime in particular. This 
would suggest that there exists a reasonable basis for considering SST gradient as a 
switching mechanism. 
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Figure 12 Monthly rainfall distributions at Manjimup for each SST 
gradient regime. (Note: different plotting scales for each regime) 

 

The distribution of the two regimes is shown in Table 5. It is clear from this that the low 
SST gradient regime is a summer rainfall feature and does not provide an indicator of 
winter rainfall. A more detailed search of the high rainfall regime may detect a further 
threshold. 
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Number of Rainfall Months In Regime:  

Month SST Gradient ≤ -1.59 SST Gradient > -1.59 

January 2 40 

February 16 26 

March 18 24  

April 1 41  

May 0 43  

June 0 43  

July 0 43  

August 0 43  

September 0 43 

October 0 43 

November 0 43 

December 0 43 

 37 475 

 

Table 5 Number and distribution of months across SST 
gradient regimes for Manjimup monthly rainfall. 

 

 

3.3. Rottnest Island Monthly Rainfall 

3.3.1 Predicting Rainfall From The Rainfall History Only 
The threshold diagnostic plot is shown in Figure 13. Once again there appears to be 
evidence for a threshold in the vicinity of –1.1, although on this occasion there appears to 
be a discontinuity present. This suggests that there is evidence for complicated behaviour 
in this region. 
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Figure 13 Diagnostic plot for choosing the number of thresholds and their 
approximate locations for Rottnest Island rainfall. 

 

The 1-month ahead predictions are plotted against their observed values in Figure 14; the 
correlation of 0.821 is somewhat higher than for Manjimup. The vertically aligned points 
in the bottom left of the plot correspond to dry months in the observed record. The time 
series model at present does not explicitly account for dry periods. We see again that the 
largest observed events are consistently under-predicted. 
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Figure 14 1-month-ahead predictions of monthly rainfall at Rottnest Island. 
The correlation between predicted and observed rainfall is 0.821. 

 

The parameter estimates used to derive the predictions are shown in Table 6. The 1-
month-ahead predictions for the corresponding linear model are shown in Figure 15, 
which is an order 19 model. The threshold model suggests that there are two rainfall 
regimes distinguished by a threshold at about –1.1. There is a ‘Low’ regime of order 4, 
which is essentially a contrast between rainfall 2 and 4 months previously. The 
‘Normal/High’ regime has a much longer time dependency of 13 months, with more 
structure than for the ‘Low’ regime. 
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Parameter 

 
Estimate 

95% Credibility 
Interval 

 Threshold -1.09 -1.17, -1.02 

Order 4 4, 6 

Intercept -0.427 -1.19, 0.335 

Lag-2 0.321 0.0776, 0.571 

Lag-4 -0.433 -0.629, -0.208 

 

Regime 1:
‘Low’ Rainfall

Variance 0.55373 0.41108, 0.74165 

Order 13 13, 18 

Intercept -0.00376 -0.0648, 0.0568 

Lag-1 0.144 0.0465, 0.250 

Lag-7 -0.101 -0.188, -0.0140 

Lag-11 0.262 0.172, 0.355 

Lag-12 0.126 0.0175, 0.230 

Lag-13 0.277 0.189, 0.366 

 

 

Regime 2:
‘Normal/High’  

Rainfall  

Variance 0.28853 0.24976, 0.33405 

 

Table 6 Model-averaged parameter estimates with 95% credibility intervals. 
Only statistically significant parameters are shown, correct to 3sf except for variance 
parameters which are shown correct to 5sf. 
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Figure 15 Results from fitting a conventional linear autoregressive model (order 19); 
the correlation between 1-month-ahead predictions and standardised monthly rainfall is 
0.825. 

3.3.2 Predicting Rainfall Using The Southern Oscillation Index (SOI) As A 
Switch 

No evidence was found that SOI provides any additional contribution to the rainfall 
history. When SOI was included as a predictor, using rainfall as the switching variable, 
the estimates obtained were unstable. When SOI was used as the switching variable, but 
not as a predictor, no stable threshold was found. 

This is quite a stark comparison with Manjimup where SOI did seem to influence 
monthly rainfall. The case for an SOI influence on Rottnest Island monthly rainfall seems 
to be weak on the basis of this analysis. 

3.3.3 Predicting Rainfall Using SST Gradient As A Switch 
We first investigate using SST gradient as the switching variable, but without including 
SST gradient as a predictor in the model. The threshold diagnostic plot is shown in Figure 
16, and there is clear evidence for a threshold at approximately –0.85. The 1-month ahead 
predictions for rainfall are shown in Figure 17, and we see that the correlation between 
predicted and observed rainfall is 0.829. The parameter estimates used to generate these 
predictions are shown in Table 1. There are some strong similarities in the structure of the 
SST gradient regimes here with the rainfall regimes found in section 3.3.1. They are not 
as closely matched as the SOI results for Manjimup however. 
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Figure 16 Diagnostic plot for choosing the number of thresholds and their 
approximate locations for Rottnest Island rainfall, using SST gradient as the 
threshold. 
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Figure 17 1-month-ahead predictions of monthly rainfall at Rottnest Island using 
SST gradient as the switching variable. The correlation between predicted and observed 
rainfall is 0.829. 
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Parameter 

 
Estimate 

95% Credibility 
Interval 

 Threshold -0.831 -0.851, -0.805 

Order 5 5, 5 

Intercept -0.510 -0.804, -0.248 

Lag-2 0.295 0.0878, 0.478 

Lag-4 -0.378 -0.664, -0.141 

Lag-5 -0.313 -0.572, -0.0569 

 

Regime 1:
Low SST gradient

Variance 0.51144 0.38359, 0.67864 

Order 13 13, 13 

Intercept 0.0555 -0.00467, 0.113 

Lag-1 0.215 0.119, 0.307 

Lag-4 -0.0874 -0.167, -0.00691 

Lag-7 -0.0950 -0.181, -0.0112 

Lag-11 0.265 0.172, 0.359 

Lag-13 0.242 0.150, 0.329 

 

 

Regime 2:
High SST gradient  

Variance 0.27942 0.23820, 0.32471 

 

Table 7 Model-averaged parameter estimates with 95% credibility intervals. 
Only statistically significant parameters are shown, correct to 3sf except for variance 
parameters which are shown correct to 5sf. 
 

It is of some interest to compare the rainfall patterns defined by the two SST gradient 
regimes identified, and these are shown in Figure 18. We see that the low SST gradient 
regime is associated predominantly with below average rainfall. The rainfall months 
associated with the regimes are shown in Table 8, and it seems clear that the high SST 
gradient is associated with winter rainfall in particular. There is therefore some potential 
here to develop a predictive model for monthly rainfall. 
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Figure 18 Monthly rainfall distributions at Rottnest Island for each SST gradient 
regime. (Note: Different plotting scales for each regime) 
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Number of Rainfall Months In Regime:  

Month SST Gradient ≤ -0.83 SST Gradient > -0.83 

January 21  20 

February 37  5 

March 38  4 

April 14 28 

May 1 41 

June 1 41 

July 1 41 

August 1 41 

September 0 42 

October 0 42 

November 0 42 

December 0 42 

 114 389 

Table 8 Number and distribution of months across SST 
gradient regimes for Rottnest Island monthly rainfall. 

4 Discussion 

4.1. Physical Interpretations 
The case studies presented in this report were primarily used to develop and test the 
nonlinear statistical methodology. For the purposes of discussion we set this aside for the 
moment. We note that the new method has produced sensible results, which is the 
outcome we were seeking at this stage of its development. 

Some interesting differences have emerged between the two study sites of Rottnest Island 
and Manjimup. In the case of monthly rainfall at Rottnest Island we have found no 
significant link to the Southern Oscillation. There does however appear to be a link in the 
case of Manjimup. This is supported by a comparison of the results where SOI and 
rainfall are used as the switching variable. The regimes found using rainfall as the 
switching variable were almost identical to those found when using SOI as the switching 
variable. This suggests that SOI can be used to explain the switching behaviour of the 
monthly rainfall series at Manjimup. 

Whilst a rainfall teleconnection with the Southern Oscillation is not widely recognised, 
there is some existing evidence. For example, Crowder [1995] pp240-41 notes severe 
rainfall deficits in April 1982 through February 1983 in the far Southwest. This was a 
very severe El Niño event. This period was not detected in our Manjimup case study, but 
this may be because the high-SOI regime was not particularly well defined. 
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It was found that SOI did not work well as a predictor in the statistical modelling, only as 
a switching variable. Thus SOI can in principle be used to forecast switches in rainfall 
regime, but not as a simple predictor of future rainfall values. 

There is some evidence that SST gradient in the Indian Ocean influences rainfall at both 
Rottnest Island and Manjimup. This is physically reasonable since SST gradient is 
measuring a capacity for winds to be generated in the mid-Indian Ocean. It is not difficult 
to see how a change in circulation patterns beyond a critical value could cause a switch in 
rainfall regime.  

The nature of circulation patterns is that they act on very large scales. It may therefore be 
more realistic to develop a switching variable that is a combination of broad scale 
circulation patterns. It would be of particular relevance to incorporate data from the 
Southern (if feasible) and Pacific Oceans if this were to be done. 

 

Key Points: 

• Different physical mechanisms appear to influence rainfall at Rottnest Island and 
Manjimup. 

• There is some evidence that the Southern Oscillation plays a role in causing switches 
between rainfall regimes. 

• Sea surface temperature gradient in the mid-Indian Ocean seems to influence 
switching of rainfall regime at Rottnest Island. It seems to be a leading indicator of 
winter rainfall, and there seems to be the basis for a winter rainfall prediction scheme. 
It also seems to play a role at Manjimup, but is less well defined than for Rottnest 
Island. 

• There is a case for developing switching variables that are combinations of variables 
representing circulation patterns in the Indian, Southern (if feasible) and Pacific 
Oceans. The extension to the Bayesian threshold method discussed below will be of 
some use. 

4.2. Statistical Issues 
The statistical methodology has been found to work well on a practical level. It is 
reasonably straightforward to simultaneously identify important lags and estimate the 
corresponding parameters. The identification of the number of thresholds and the delay is 
somewhat ad hoc however. In standard practice penalised likelihood methods would be 
used, although not particularly satisfactorily. However, a more promising approach is to 
use spline methods to estimate the generating mechanism of the time series. In this richer 
setting the thresholds become knot points, and the choice of knot points is a somewhat 
easier problem to solve. The delay is expressed through the lags associated with the knot 
points, and is essentially automatic. The methodology developed so far seems to be 
reasonably straightforward to adapt to this more general approach. 

During the final phase of IOCI we will produce probability distributions for forecasts, 
which will incorporate a complete statement of uncertainty. These probability 
distributions can also be used to validate the nonlinear modelling. 
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An issue that has yet to be resolved in an entirely satisfactory way is the choice of prior 
distributions for the model orders in each regime. The results reported here use Poisson 
distributions, but some of our results suggest that better mixing could be obtained by 
placing a hyper-prior on the Poisson mean- a gamma distribution would result in a 
negative binomial prior overall. We will investigate this point in the on-going work. 

 

Key Points: 

• The statistical methodology we have developed is working well. 

• Some physically interesting results have already been obtained. 

• Probability forecasts will be produced in the next phase. 

• The choice of prior distributions for model orders has not been fully resolved. An 
approach using hyper-priors on model order will be considered. 

• A collaborative effort with the new nonlinear tool is required to extract maximum 
value from it. 

 

5 Conclusions 
The primary task for CSIRO Mathematical & Information Sciences (CMIS) during this 
phase of IOCI has been to develop the statistical methodology to the point where it can 
usefully be applied. We have reached this point, although there are still some potentially 
useful extensions that can be pursued, particularly in relation to modelling climate 
interactions. However, the focus of CMIS’ work for the remainder of IOCI will be on the 
detailed development and analysis of case studies identified by the contributing partners. 

The case studies described here have been presented in the spirit of testing whether 
sensible results are obtained using the methodology developed, rather than seriously 
seeking rainfall predictors. The task of seeking rainfall predictors is a collaborative 
exercise, which now has an additional nonlinear tool to make use of. In our case studies 
we have found some evidence that predictors such as the Southern Oscillation (SOI) and 
sea surface temperature (SST) gradient have some potential to provide a climate 
switching mechanism in the threshold model framework described by Figure 2. In the 
case of SOI we found a stark difference in that there appeared to be an influence on 
Manjimup rainfall but not on Rottnest Island rainfall. For Manjimup it seems that the 
Southern Oscillation has some impact in extreme cases, but by no means supplies a 
complete picture. 

There is some evidence that SST gradient in the mid-Indian Ocean causes switching of 
rainfall regime at Rottnest Island in particular, and clearly seems to be linked to winter 
rainfall. There is a basis here for exploring predictive models for winter rainfall. There 
does also seem to be some influence on Manjimup rainfall. It could well be that an 
underlying climate switch should be formed from a combination of processes, rather than 
Indian and Pacific Ocean influences on their own. The methodology developed by CMIS 
could be adapted to aid a search for such combinations.  
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Key Points: 

• We have developed a physically motivated statistical model (‘Bayesian switching 
model’) for modelling nonlinear climate processes. 

• Changes between climate regimes are triggered by a switching variable, and 
alternative switching variables can be compared. 

• The Bayesian switching model can identify good predictors and the lags at which 
they influence climate variables, such as rainfall. 

• We have reached the point where a nonlinear time series approach can be applied to 
practical problems. 

• There is some evidence that SOI and mid-Indian Ocean SST gradients play a role in 
switching between rainfall regimes. This is cited at this stage as evidence that the new 
nonlinear approach is producing sensible results, rather than new insights per se. 

• Interactions between climate processes are likely to influence rainfall in Southwest 
WA. Some reasonably straightforward extensions to the Bayesian switching model 
will facilitate the search for subtler climate teleconnections arising from such 
interactions. 

• The focus of future work will be the development of case studies with IOCI’s 
contributing partners. 
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Appendix A- Glossary 

Cross-referenced terms and acronyms are shown in italics. 

 

Anomaly It is usual to express climate data as deviations from the 

long term average, and this deviation is known as an 

anomaly. 

Bayesian A statistical framework that expresses uncertainty using 

probability distributions. Bayesian statisticians explicitly 

combine data with subjective knowledge to learn about 

physical processes. This is accomplished using Bayes’ 

theorem. 

 

Bayes’ Theorem As implemented in scientific practice, this theorem 

essentially states that uncertainty conditional on available 

data and expert knowledge is proportional to the product 

of the uncertainty in the data and the uncertainty in expert 

knowledge. 

 

Delay In physical systems there may well be a time delay 

between cause and effect, and this is captured by a so-

called delay parameter. 

 

Interaction In physical systems the effect of one variable may depend 

on the value of another. For example, a low pressure 

system will not bring rainfall when sea surface 

temperature is low. In this case sea surface temperature is 

said to interact with air pressure. 
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Knot Point When using splines we divide up the domain of a function 

so that it can be approximated by a set of simple functions. 

The points at which the domain is divided are known as 

knot points. 

 

Linear A general term to describe relationships that can be 

represented as straight lines between two variables, or 

hyperplanes for many variables. 

 

Markov chain Monte Carlo A computationally intensive technique that uses 

simulation techniques to implement Bayesian statistical 

methods. This term is universally known by the acronym 

MCMC. 

 

Nonlinear A general term to describe relationships that cannot be 

described as straight lines or hyperplanes, as is the case for 

linear relationships. 

 

Posterior Distribution A probability distribution that integrates expert knowledge 

and available data, and is typically calculated using Bayes’ 

theorem. 

Reversible Jump MCMC A methodology for choosing optimal statistical models in 

a Bayesian statistical framework, motivated by MCMC 

ideas. 

 

Spline A technique for approximating functions, typically 

accomplished by breaking the domain of the function into 

segments within each of which some simple function is 
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fitted to the data. The boundaries between domains are 

known as knot points. 

 

Switching Variable In threshold models of a physical system a key variable 

causes the system to switch behaviour. This key variable 

is known as a switching variable. 

Time Series A set of data recorded sequentially in time. 
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Appendix B- List of Acronyms 

CLW CSIRO Land and Water. 

CMIS CSIRO Mathematical and Information Sciences. 

CMR CSIRO Marine Research. 

ENSO El Niño-Southern Oscillation 

IOCI Indian Ocean Climate Initiative. 

MCMC Markov chain Monte Carlo. 

SOI Southern Oscillation Index 

SST Sea Surface Temperature. 

SWA Southwest Western Australia. 
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Appendix C- Submitted manuscript describing the statistical 
methods developed by IOCI for the case studies. 
At the time of writing the manuscript is under peer review for possible publication in the 
Journal of Time Series Analysis. A copy of the current version is available from the 
author: 

 e-mail: eddy.campbell@csiro.au 

 Tel: (08) 9333 6203 

193 

mailto:eddy.campbell@csiro.au

	IOCI  October, 2001         Second Research Report
	
	
	Indian Ocean Climate Initiative a Contributing Partnership



	BMRC.pdf
	LIST OF TABLES
	LIST OF FIGURES
	RESULTS OF SECOND RESEARCH PHASE
	Specific seasonal climate forecast system for SWWA
	Seasonal climate predictability
	Target forecasts
	Method
	Station Information
	
	Predictors
	Rainfall
	Temperature
	Rainfall
	Mean Maximum Temperature
	Number of days over 35(C
	Number of days over 40(C

	Summary



	Sea Surface Temperature Gradients and Prediction
	Rainfall and Temperature Data
	SST Data
	Correlations of SST Gradients with SW Rainfall
	Rainfall Tercile Prediction Using SST Gradients
	Temperature Tercile Prediction Using SST Gradients

	Wheat yield predictability
	Data
	
	
	
	
	Method





	Results
	Discussion

	Antarctic Circumpolar Wave (ACW)
	
	
	Relations to the El Niño - Southern Oscillation �
	Summary



	Equatorial Indian Ocean SST Dipole
	
	
	Summary




	Causes of decadal decline in rainfall in SWWA
	
	
	
	Summary





	CONCLUSIONS
	ABBREVIATIONS & GLOSSARY
	REFERENCES

	Atmos Research.pdf
	TABLE OF FIGURES
	CAR RESEARCH PROPOSALS FOR IOCI SECOND RESEARCH PHASE (JULY 1999-DECEMBER 2000)
	1. Multi-seasonal predictions using global climatic models
	2. Millennial coupled simulations.
	3. Greenhouse simulations
	4. Observational Studies

	SUMMARY OF THE SECOND RESEARCH PHASE RESULTS
	Multi-seasonal predictions
	Millennial coupled simulations
	Greenhouse simulations
	Observational analyses
	Interpretation of greenhouse simulations from other models
	Sources of predictability

	Possible causes of the long-term dry conditions

	RESULTS OF CAR IOCI SECOND RESEARCH PHASE STUDIES
	1.Multi-seasonal predictions using global climatic models.
	Introduction
	Mark3 rainfall simulations

	Coupled/statistical model predictions
	2. Millennial coupled simulations.
	Introduction

	Further analyses of the Mark2 coupled model 1000-year simulation
	
	
	Eastern Indian Ocean SSTs


	The Antarctic Circumpolar Wave and its influence over SWWA
	Cai et al. (1999) analysed 60 years from a CSIRO coupled model simulation and focussed on the results for Southern Ocean SSTs. While an ACW-type pattern was identified, it did not exhibit a clear propagating wavenumber-2 signal as in the observations. 
	Southern Indian Ocean SSTs
	Analysis of the 10,000-year run

	3. Greenhouse simulations
	Introduction
	Analyses of greenhouse scenarios using the Mark2 model
	Preliminary analysis of greenhouse simulations with the Mark3 GCM

	4. Observational Studies
	The role of southern hemisphere pressure patterns

	5. Interpretation of greenhouse simulations
	Introduction


	Acknowledgment
	References

	CLW.pdf
	LIST OF TABLES
	LIST OF FIGURES
	SUMMARY
	ACKNOWLEDGEMENTS
	1.INTRODUCTION
	1.1Downscaling Climate Model Simulations
	1.2Nonhomogeneous Hidden Markov Model (NHMM)
	1.3General Circulation Model

	2.DESCRIPTION OF STUDY AREA AND DATA
	3.EVALUATION AND MODIFICATION OF DOWNSCALING MODEL
	3.1Introduction
	3.2Evaluation of the NHMM
	3.3Modification of the NHMM

	4.EXPLANATION FOR THE MULTIDECADAL, WINTER PRECIPITATION DECLINE OVER SOUTHWEST AUSTRALIA
	4.1Introduction
	4.2Approach
	4.3Methods
	4.3.1Analysis of Weather State Sequence
	a.Changes in steady-state probabilities of weather states
	b.Changes in weather state counts for each calendar month in winter
	c.Changes in weather state transition probabilities

	4.3.2Exploratory Analysis of Atmospheric Predictor Series
	4.3.3Sensitivity Analysis

	4.4Results
	4.4.1Analysis of Weather State Sequence
	4.4.2Exploratory Analysis of Atmospheric Predictor Series
	4.4.3Sensitivity Analysis

	4.5Discussion
	4.6Conclusions

	5.LOW FREQUENCY CLIMATE VARIABILITY
	5.1Introduction
	5.2Results and Discussion

	6.CONCLUSIONS
	6.1Summary of the Investigation
	6.2Future Research

	7.REFERENCES
	APPENDIX A - GLOSSARY
	APPENDIX B - LIST OF ACRONYMS

	CMIS Report.pdf
	LIST OF TABLES
	LIST OF FIGURES
	Summary
	Suggested Reading

	Introduction
	Year 3 Development Path
	Probability Distributions for Forecasts
	Climate Switching Models
	Incorporating Ocean-Atmosphere Interactions
	Modelling Approach
	Development of Methodology

	Case Studies
	Description of Data
	Manjimup Monthly Rainfall
	Predicting Rainfall From The Rainfall History Only
	Predicting Rainfall Using The Southern Oscillation Index (SOI) As A Switch
	Predicting Rainfall Using SST Gradient As A Switch

	Rottnest Island Monthly Rainfall
	Predicting Rainfall From The Rainfall History Only
	Predicting Rainfall Using The Southern Oscillation Index (SOI) As A Switch
	Predicting Rainfall Using SST Gradient As A Switch


	Discussion
	Physical Interpretations
	Statistical Issues

	Conclusions
	References
	Appendix A- Glossary
	Appendix B- List of Acronyms
	Appendix C- Submitted manuscript describing the statistical methods developed by IOCI for the case studies.


