

# 123 KING ROAD, OAKFORD

# **Targeted Groundwater Assessment – Factual Report**

#### Submitted to:

Department of Water and Environmental Regulation The Atrium, Level 4 168 St Georges Terrace PERTH WA 6000



**Report Number.** 1779954-001-R-Rev1 **Distribution:** 

1 electronic copy – Department of Water and Environmental Regulation

1 electronic copy - Golder Associates Pty Ltd









# **Table of Contents**

| 1.0   | INTRO    | DUCTION                                                                          | 1  |
|-------|----------|----------------------------------------------------------------------------------|----|
| 2.0   | SCOPE    | OF SERVICES                                                                      | 1  |
| 3.0   | METHO    | DDOLOGY                                                                          | 1  |
|       | 3.1      | Well locations                                                                   |    |
|       | 3.2      | Well installation                                                                |    |
|       | 3.3      | Well surveying                                                                   |    |
|       | 3.4      | Well development                                                                 |    |
|       | 3.5      | Groundwater gauging                                                              |    |
|       | 3.6      | Groundwater monitoring                                                           |    |
|       |          | •                                                                                |    |
| 4.0   |          | OF ASSESSMENT                                                                    |    |
| 5.0   |          | E CHARACTERISATION                                                               |    |
| 6.0   | RESUL    | TS                                                                               | 7  |
|       | 6.1      | Groundwater flow                                                                 | 7  |
|       | 6.2      | Field parameters                                                                 | 8  |
|       | 6.3      | Analytical results                                                               | 8  |
| 7.0   | QUALI    | TY ASSURANCE/QUALITY CONTROL                                                     | g  |
| 8.0   | SUMM     | ARY                                                                              | 11 |
| 9.0   | IMPOR    | TANT INFORMATION                                                                 | 12 |
| 10.0  | REFER    | ENCES                                                                            | 12 |
|       |          |                                                                                  |    |
| TAB   | LES      |                                                                                  |    |
|       |          | d ranking system                                                                 | 1  |
| Table | e B: Gro | undwater well installation summary                                               | 2  |
| Table | e C: PID | screening summary                                                                | 2  |
| Table | e D: Wel | l gauging summary                                                                | 3  |
| Table | e E: DW  | ER-listed products of potential PFAS contamination during environmental sampling | 5  |
| Table | e F: Sum | nmary of groundwater analytical results                                          | 8  |
| Table | e G: QA  | QC summary                                                                       | 10 |





#### FIGURES (AT END OF TEXT)

Figure 1: Site Location

Figure 2: Well Locations

Figure 3: Groundwater Elevations

Figure 4: Guideline Exceedances

#### **TABLES (AT END OF TEXT)**

Table 1: Groundwater Levels

Table 2: Groundwater Analytical Results

Table 2A: PFAS Analytical Results

Table 3: QA/QC: RPD Analysis

Table 4: QA/QC: Blank Results

#### **APPENDICES**

#### **APPENDIX A**

Borehole Logs

#### **APPENDIX B**

**Calibration Certificates** 

#### **APPENDIX C**

Waste Disposal Certificate

#### APPENDIX D

Chain of Custody Documentation

#### **APPENDIX E**

**Groundwater Sampling Sheets** 

#### **APPENDIX F**

Laboratory Analytical Reports

#### **APPENDIX G**

Important Information







#### 1.0 INTRODUCTION

Golder Associates Pty Ltd (Golder) was engaged by the Department of Water and Environmental Regulation (DWER) to conduct a targeted groundwater assessment at 123 King Road, Oakford, WA (the site; refer to Figure 1).

#### 2.0 SCOPE OF SERVICES

The scope of services was to:

- Install five shallow groundwater wells to a depth of approximately 5 m below ground level (bgl), dependent upon encountered conditions.
- Undertake groundwater gauging of the newly installed wells and an additional three wells located off site.
- Undertake groundwater sampling of the newly installed wells.
- Prepare a factual report presenting the results of groundwater analysis (this report)

#### 3.0 METHODOLOGY

#### 3.1 Well locations

Groundwater well locations were nominated by the DWER. Prior to installation of groundwater monitoring wells, the locations were agreed between the DWER and the landowners. The wells were located such that groundwater quality upgradient and downgradient of the site could be assessed.

#### 3.2 Well installation

All drill locations were cleared by a licensed utility locator prior to ground disturbance. Following confirmation that no services were located within the drill location, each location was physically checked using non-destructive testing.

Drilling was undertaken by Direct Push Probing Pty Ltd using push tube and solid stem auger. The first 1.5 m were cleared using a hand auger.

All boreholes were logged in the field by a Golder environmental scientist. Detailed descriptions of the soil profile encountered at each borehole location was documented in accordance with the Unified Soil Classification System (USCS). Site soils comprised predominantly grey black sand to black brown silty sand at depth.

Soil was assessed in the field for visual and olfactory signs of contamination, with the assessment listed on the bore log for each well. Table A outlines the Field Ranking System used.

Table A: Field ranking system

|      | Visual Contamination                            | Odorous Soil |                      |  |  |
|------|-------------------------------------------------|--------------|----------------------|--|--|
| Rank | Description                                     | Rank         | Description          |  |  |
| 0    | No visible evidence of contamination            | Α            | No odour             |  |  |
| 1    | Slight evidence of visual contamination (trace) | В            | Slightly offensive   |  |  |
| 2    | Visible contamination (more than trace)         | С            | Moderately offensive |  |  |
| 3    | Obviously contaminated (significant colour)     | D            | Strongly offensive   |  |  |

Groundwater was encountered at approximately 2.7 m bgl for all wells during drilling. Five groundwater monitoring wells were installed as part of this assessment (named VB1, VB2, VB3, VB4, and VB5) to depths ranging between of 4.5 m bgl and 5 m bgl.







Table B below summarises well details.

Table B: Groundwater well installation summary

| Well Drilling<br>ID Date |            | Borehole<br>Depth<br>(m bgl) | Screen<br>Interval<br>(m bgl) | Groundwater Level<br>Observed During Drilling<br>(m bgl) | Soil Description   |
|--------------------------|------------|------------------------------|-------------------------------|----------------------------------------------------------|--------------------|
| VB1                      | 28/06/2017 | 5                            | 1.7-4.7                       | 2.7                                                      | Sand to silty sand |
| VB2                      | 28/06/2017 | 5                            | 1.7-4.7                       | 2.7                                                      | Sand to silty sand |
| VB3                      | 28/06/2017 | 5                            | 1.7-4.7                       | 2.7                                                      | Sand to silty sand |
| VB4                      | 28/06/2017 | 4.5                          | 1.5-4.5                       | 2.7                                                      | Sand to silty sand |
| VB5                      | 28/06/2017 | 5                            | 2-5                           | 2.7                                                      | Sand to silty sand |

A photoionisation detector (PID) was used during drilling to detect ionisable organic compounds in soil at approximately every 0.5 m intervals. No visual signs of contamination were noted during well installation works, while a generic rotten egg odour was noted during drilling of wells VB1, VB4 and VB5.

The soil PID results are summarised in Table C.

Table C: PID screening summary

|         | Minimum PID    | Measurement      | Maximum PID Measurement |                  |  |  |
|---------|----------------|------------------|-------------------------|------------------|--|--|
| Well ID | Value<br>(ppm) | Depth<br>(m bgl) | Value<br>(ppm)          | Depth<br>(m bgl) |  |  |
| VB1     | 0.0            | 0-0.1            | 44.7                    | 4.4-4.5          |  |  |
| VB2     | 0.1            | 1.4-2.5          | 21.8                    | 4.4-4.5          |  |  |
| VB3     | 0.0            | 0-1.5            | 11.2                    | 4.9-5            |  |  |
| VB4     | 0.0            | 0-1              | 62.8                    | 3.9-4            |  |  |
| VB5     | 0.1            | 0-0.1            | 46.6                    | 2.9-3            |  |  |

Monitoring wells were completed as outlined below:

- 50 mm Class 18 uPVC threaded prepacked casing (AS/NZS 1477:1999) with PVC end cap
- 0.5 mm machine slotted 50 mm Class 18 uPVC threaded screen (AS/NZS 1477:1999)
- 1.6-3.6 mm washed and graded filter pack to 1.0 m above slotted screen
- Approximately 1 m screen above the watertable
- Approximately 2 m screen below the watertable
- Minimum 0.5 m bentonite seal above the filter pack to minimise infiltration of surface water and potential for cross-contamination between lithologies
- Annulus grouted to the surface using a bentonite-cement grout mixture or backfilled, and
- The five wells installed were finished with secure steel stick-up (0.6 m) well cover with lock.

Refer to Appendix A for borehole logs and well completion details.







# 3.3 Well surveying

All five newly installed groundwater wells were surveyed by a certified land surveyor to a relative datum, allowing inferred groundwater flow direction to be calculated. Survey data is summarised in Table 1.

# 3.4 Well development

Each groundwater well was developed post installation and allowed to equilibrate for a period of at least seven days. Well development comprised purging of at least 40 L of groundwater using a low flow submersible pump and visual monitoring of purge water until water appeared clear.

Development water was stored in drums at the site until analytical results were obtained to allow appropriate disposal of the groundwater. A soil sample of the drill cuttings was also collected at this time to allow for appropriate disposal. Toxfree removed the waste from site on 26 July 2017 under the supervision of Golder. The Certificate of Disposal is presented in Appendix C.

# 3.5 Groundwater gauging

All newly installed wells plus the three off-site wells were gauged during groundwater monitoring on 10 July 2017. Groundwater gauging data is summarised below in Table D.

Table D: Well gauging summary

| Well ID | Groundwater Level (m below top of casing) |
|---------|-------------------------------------------|
| VB1     | 2.884                                     |
| VB2     | 2.622                                     |
| VB3     | 2.816                                     |
| VB4     | 2.257                                     |
| VB5     | 2.207                                     |
| BH101*  | 2.037                                     |
| BH02A*  | 1.953                                     |
| MB03A*  | 2.002                                     |

Notes: \* existing off-site well

# 3.6 Groundwater monitoring

Golder conducted one round of low-flow groundwater sampling on 10 July 2017 using a peristaltic pump at five groundwater monitoring locations. Groundwater samples were collected and preserved in accordance with the relevant section of the Australian Standard AS/NZS 5667.11:1998: Water Quality – Sampling, Part 11 – Guidance on Sampling of Groundwaters; and Section 8.2.4 of Schedule B2 of the National Environment Protection (Assessment of Site Contamination) Measure 2013 ("NEPM method").

Our protocols for sampling followed chain of custody (COC) requirements with COCs that were discreet and did not inform the laboratory of the client, the site location or well identifiers. Each sample had a unique, nondescript identification number. COC documentation is included in Appendix D.

A water level was recorded prior to sampling using an interface probe and the drawdown was monitored during pumping to ensure that the groundwater level was maintained with less than 10 cm drawdown. During the purging, near continuous measurement of field groundwater parameters were undertaken using a pre-calibrated water quality meter and flow through cell. Each groundwater sample was collected once the field parameters stabilised (to within 5% to 10%). Calibration certificates are included in Appendix B. Groundwater sampling sheets are included in Appendix E.





Each groundwater sample was collected using dedicated nitrile gloves, dedicated high density polyethylene tubing and placed into bottles supplied by the laboratory with the relevant preservatives (where appropriate). Samples for metals analysis were field filtered with a single-use disposable 0.45 µm filter prior to mixing with preservative. Samples were labelled and stored on ice for transport by Golder field staff to the NATA-accredited laboratory for analysis.

PFAS sampling was undertaken at the site with the purpose to confirm the absence/presence of PFAS compounds in groundwater.

The DWER Guidelines<sup>1</sup> indicates commonly suspected PFAS sources and alternative practices to eliminate the potential for PFAS cross contamination during well installation and sampling. Table E overleaf indicates compliance to the current guideline practices.

<sup>&</sup>lt;sup>1</sup> Interim Guidelines on the Assessment and Management of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS), Contaminated Sites Guidelines, Government of Western Australia, Department of Water and Environmental Regulation, January 2017.





Table E: DWER-listed products of potential PFAS contamination during environmental sampling

| Product                                                                                                      | Mitigation Practice            | Alternative Product/Practice                                                                                                                                                                                                                                                                                     | Compliance                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New clothing                                                                                                 |                                | Wash all field clothing a minimum of six times after purchase to remove surface coatings before using at the site.                                                                                                                                                                                               | Yes. Field staff ensured field clothing had been sufficiently washed prior to use on site.                                                                                                                    |
| Clothing with stain-resistant, rain-resistant, or waterproof coatings/treated fabric (for example GORE-TEX®) |                                | Avoid sampling during rain if possible; polyethylene rain gear (for example disposable LDPE), vinyl or polyvinyl chloride (PVC) clothing are acceptable.                                                                                                                                                         | Yes. Golder sampled on a day where no rain was forecast or observed.                                                                                                                                          |
| Tyvek® clothing                                                                                              | Not to be used/                | None                                                                                                                                                                                                                                                                                                             | Yes                                                                                                                                                                                                           |
| Fast food wrappers and containers                                                                            | consumed by sampling personnel | Use rigid plastic containers or bags or stainless steel containers for all food brought to site.                                                                                                                                                                                                                 | Yes. Field personnel took a dedicated lunch break to minimise potential cross contamination from food packaging.                                                                                              |
| Pre-wrapped foods and snacks (for example chocolate bars, energy bars, granola bars and potato chips         |                                | Use plastic (rigid containers or bags) or stainless steel containers to bring food to site.                                                                                                                                                                                                                      | Yes. Field personnel took a dedicated lunch break to minimise potential cross contamination from food packaging.  Hands were thoroughly washed and rinsed prior to and following handling of food containers. |
| Teflon® containing or coated field equipment (tubing, bailers, tape and plumbing paste)                      | Do not use at site             | High Density Polyethylene (HDPE) or silicone tubing, and HDPE or polypropylene field equipment recommended.  Concawe (2016) reports that although high purity Teflon tubing does not cause 'blank contamination' in contrast to common Teflon tubing, some researchers have found that Teflon could adsorb PFAS. | Yes                                                                                                                                                                                                           |
| Teflon® lined lids on containers (for example sample containers, rinsate water storage containers)           | Do not use at site             | Polypropylene lids for sample containers and polypropylene or HDPE containers for rinsate.                                                                                                                                                                                                                       | Yes. Teflon was not present in the sampling containers used for groundwater analysis.                                                                                                                         |
| Glass sample containers with lined lids                                                                      | Do not use                     | Use polypropylene or HDPE for sample containers (PFAS adsorb strongly to glass).                                                                                                                                                                                                                                 | Yes                                                                                                                                                                                                           |





| Product                                                                                   | Mitigation Practice | Alternative Product/Practice                                                                                               | Compliance                                                                                                                                         |  |  |
|-------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Aluminium foil                                                                            | Do not use          | Thin HDPE sheeting (commonly used as drop cloths for painting or home improvement) can be used.                            | Yes                                                                                                                                                |  |  |
| Self-sticking notes and similar office products (for example 3M Post-It notes)            | Do not use at site  | Avoid the use of these products at the site.                                                                               | Yes                                                                                                                                                |  |  |
| Waterproof paper, notebooks, and labels                                                   | Do not use at site  | Standard paper and paper labels.                                                                                           | Yes                                                                                                                                                |  |  |
| Drilling fluid containing PFAS                                                            | Do not use at site  | PFAS-free drilling fluids or use alternative techniques (for example sonic drilling) which do not require drilling fluids. | Yes. For QA/QC purposes, a rinsate sample taken during drilling included PFAS analysis to confirm the effectiveness of decontamination procedures. |  |  |
| Detergents and decontamination solutions (for example Decon 90® Decontamination Solution) | Do not use          | Follow water-only decontamination approach.                                                                                | Yes. Removed Decon 90 from decontamination procedures and adopted a triple water rinse for all non-dedicated equipment.                            |  |  |
| Reusable chemical or gel ice packs (for example Bluelce®)                                 | Do not use          | Ice contained in plastic (polyethylene) bags (double bagged).                                                              | Yes                                                                                                                                                |  |  |





#### 4.0 BASIS OF ASSESSMENT

The following guidelines were adopted for the purposes of assessing groundwater conditions at the site:

- Guidelines for Fresh Waters, as published in Assessment and management of contaminated sites (Department of Environment Regulation, 2014)
- Australian Drinking Water Guidelines (Health and Aesthetic Values), as published in Assessment and management of contaminates sites (Department of Environment Regulation, 2014)
- Guidelines for the non-potable use of groundwater, as published in 'Assessment and management of contaminates sites (Department of Environment Regulation, 2014)
- Guidelines for irrigation and livestock water, as published in the 'Australian and New Zealand Guidelines for Fresh and Marine Water Quality' (ANZECC & ARMCANZ, 2000), and
- Health based guidance values Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS), (Department of Health, April 2017)<sup>2</sup>
- Interim screening levels for ecological freshwater, as published in 'Interim Guideline on the Assessment and Management of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) (Department of Environment Regulation, 2017).
  - As PFAS can bio-accumulate and biomagnify, a higher level of species protection is required to be adopted. For a receiving environment such as the vineyard, the environment may be described as highly disturbed. Due to the presence of a conservation category wetland to the east of the site, a 99% species protection levels have been adopted for initial comparison.

#### 5.0 WASTE CHARACTERISATION

One soil sample was collected from the spoil drum for waste characterisation following the well installations. The sample was sent to a NATA-accredited laboratory for waste classification analysis. The soil sample was collected using dedicated nitrile gloves and then placed into laboratory-supplied glass jar with minimal headspace. The soil sample was labelled and placed in an esky on ice for transport to a NATA-accredited laboratory. Data from the waste classification was provided to the waste contractor for appropriate disposal.

#### 6.0 RESULTS

#### 6.1 Groundwater flow

The depth to groundwater for all five newly installed wells and three existing wells ranged between 1.953 m bgl (BH02A) and 2.884 m bgl (VB1). The groundwater elevation at MB03A did not appear to correlate with expected groundwater elevations (refer to Table 1 and Figure 3), therefore this elevation was not used for the purposes of groundwater contouring. Groundwater elevations ranged from 19.786 m AHD (VB5) to 20.547 m AHD (BH101).

Based on groundwater depths measured on 10 July 2017, inferred groundwater flow was to the south-east and was consistent with regional groundwater flow, as per the Department of Water (DoW) Hydrogeological Atlas. The recorded groundwater level at VB2 indicated a slightly higher groundwater level than surrounding wells by 1 cm; however, the difference is considered negligible and not thought to alter the overall inferred groundwater flow direction as calculated. Groundwater levels are presented in Table 1 and shown on Figure 3.

<sup>&</sup>lt;sup>2</sup> https://www.health.gov.au/internet/main/publishing.nsf/Content/2200FE086D480353CA2580C900817CDC/\$File/fs-Health-Based-Guidance-Values.pdf accessed 30 August 2017.







# 6.2 Field parameters

No groundwater odours or sheen were noted during groundwater sampling. Water colour as observed ranged from pale brown-orange to pale brown. Turbidity was observed as low for all wells. Electrical conductivity ranged from 404.3  $\mu$ S/cm (VB1) to 1300  $\mu$ S/cm (VB4). pH was considered acidic at the site ranging from 4.13 (VB1) to 5.87 (VB4). In-field pH monitoring reported pH levels for all wells (VB1 to VB5) outside the Fresh Water Guideline, Long-Term Irrigation Water and AWDG Drinking Water for Aesthetic Value Guidelines of 6.5-8.5 and 6-8.5.

Field parameters at the time of sampling are summarised in Table 2 and in-field groundwater sampling sheets are in Appendix E.

# 6.3 Analytical results

Laboratory analytical reports are included as Appendix F. Groundwater analytical results are summarised in Table 2 and summarised in Table F. PFAS groundwater analytical results are summarised in Table 2A and in Table F. Groundwater guideline exceedances at each well have been presented visually in Figure 4.

Table F: Summary of groundwater analytical results

| Item                         | Summary of Results                                                                                                                                                                                                                                                                                                         |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | Total oxidised nitrogen reported concentrations above the Fresh Water Guideline (Lowland River) of 0.15 mg/L for wells VB2, VB3, VB4. Wells VB1 and VB5 reported concentrations below LOR.                                                                                                                                 |
|                              | Total nitrogen reported concentrations above the Fresh Water Guideline (Lowland River) of 1.2 mg/L for all wells. Wells VB1, VB2, VB3, and VB4 reported concentrations exceeding the Long-Term Irrigation Water Guidelines, while equalling the guideline for VB5.                                                         |
| Sample Quality<br>Parameters | Total phosphorus reported concentrations ranging between 2 and 12 mg/L and exceed the Fresh Water Guideline (Lowland River) of 0.065 mg/L and the Long-Term Irrigation Water Guideline of 0.05 mg/L for all wells.                                                                                                         |
|                              | Nitrate (as N) reported concentrations above the ADWG Drinking Water Health Value (11 mg/L) at VB3 and VB4 with concentrations ranging from 24 to 33 mg/L.                                                                                                                                                                 |
|                              | Ammonia (as N) reported concentrations above the ADWG Drinking Water Aesthetic Value (0.4 mg/L) at VB1, VB2, VB4 and VB5 with concentrations ranging from 1.1 to 2.5 mg/L.                                                                                                                                                 |
|                              | Dissolved aluminium reported concentrations ranging between 0.38 mg/L (VB3) to 1.7 mg/L (VB5) exceeding the Non-Potable Groundwater Use Guideline, AWDG Drinking Water Aesthetic Value Guideline, and Freshwater Guideline for all wells.                                                                                  |
|                              | Dissolved cadmium reported concentrations below the LOR.                                                                                                                                                                                                                                                                   |
| Metals                       | Reported dissolved chromium concentrations ranged between 0.002 mg/L (VB2, VB3) and 0.007 mg/L (VB5) and exceed the Freshwater Guideline for speciated Cr VI in all wells. It is noted that in the absence of an unspeciated Cr guideline value, the speciated Cr VI value of 0.001 mg/L was applied as an initial screen. |
|                              | Dissolved copper concentrations exceed the Fresh Water Guidelines for wells VB2, VB3 and VB4. The adjusted guideline value based on water hardness was also applied; however, the three wells still exceed the adjusted value.                                                                                             |
|                              | Dissolved iron concentrations ranged between 1 mg/L (VB3) and 3.5 mg/L (VB2) and exceed the Non-Potable Groundwater Use, ADWG Drinking Water Aesthetic Value, Fresh Water and Long Term Irrigation Water Guidelines for all wells.                                                                                         |





| Item                                     | Summary of Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          | Dissolved mercury reported concentrations below the LOR for all wells; however, the LOR exceeds the Fresh Water Guideline of 0.00006 mg/L and therefore for reporting purposes is shown as an exceedance across all wells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                          | Dissolved zinc concentrations exceed the Fresh Water Guidelines for all wells. The adjusted guideline value based on water hardness was also applied which resulted in zinc exceedances at VB1, VB4 and VB5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Total                                    | Total recoverable hydrocarbons (TRH) and BTEX reported concentrations below LOR for all wells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Recoverable<br>Hydrocarbons,<br>MAH, PAH | Polyaromatic hydrocarbons (PAH) also reported concentrations below the LOR for all wells; however, the LOR for benzo(a)pyrene exceeds the Non-Potable Groundwater Use Guideline of 0.0001 mg/L and AWDG Drinking Water Health Value Guideline of 0.00001 mg/L and therefore is shown as an exceedance across all wells.                                                                                                                                                                                                                                                                                                                                                                                                       |
| Herbicides                               | Dinoseb reported concentrations below LOR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Phenolics                                | Phenolics 2,4,6-Trichlorophenol, 2,4-Dichlorophenol and 2-Chlorophenol reported concentrations below LOR for all wells; however, the LOR exceeds applicable Guidelines and therefore are shown as an exceedance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                          | Reported concentrations for Sum of PFHxS and PFOS ranged between 0.02 $\mu$ g/L (VB5) and 0.17 $\mu$ g/L (VB4), with detections in all wells. Concentrations of PFHxS and PFOS (sum) at all wells exceeded the PFAS Ecological Freshwater Guideline for 99% species protection of 0.00023 $\mu$ g/L. Concentrations of PFHxS and PFOS (sum) exceeded the DOH Drinking Water guideline of 0.07 $\mu$ g/L at VB1, VB3 and VB4.                                                                                                                                                                                                                                                                                                  |
|                                          | PFOA reported concentrations ranging between <0.01 $\mu$ g/L (VB1 and VB5) and 0.08 $\mu$ g/L (VB4) and reported concentrations below applicable guideline values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PFAS                                     | Detectable concentrations were noted for the following compounds where no guideline values were available:  Perfluorooctane sulfonic acid (PFOS) – <0.01 μg/L (VB2) – 0.11 μg/L (VB1).  Perfluorohexane sulfonic acid (PFHxS) –<0.01 μg/L (VB10 – 0.15 μg/L (VB4).  Perfluorobutanoic acid (PFBA) – <0.05 μg/L (VB1, VB5) – 0.53 μg/L (VB4).  Perfluorohexanoic acid (PFHxA) - <0.01 μg/L (VB1) – 2.6 μg/L (VB4).  Perfluoroheptanoic acid (PFHpA) – <0.01 μg/L (VB1) – 0.65 μg/L (VB4).  Perfluoropentanoic acid (PFPeA) – <0.01 μg/L (VB1) – 2.6 μg/L (VB4).  Perfluoropentane sulfonic acid (PFPeS) – <0.01 μg/L (VB1, VB5) – 0.07 μg/L (VB4).  Perfluorobutane sulfonic acid (PFBS) – <0.01 μg/L (VB1) – 0.12 μg/L (VB4). |

# 7.0 QUALITY ASSURANCE/QUALITY CONTROL

Analytical results for quality assurance duplicate samples have been compared to the results of the primary samples. This comparison has been assessed in terms of a relative percent difference (RPD) calculated as:

$$\%RPD = /\frac{A - B}{A + B} / x200$$

where: A is the concentration of an analyte from the initial sample, and

B is the concentration of the same analyte in the duplicate sample.





RPD values can range from 0 to 200, with a value of 0 representing perfect agreement between results, whilst values approaching 200 represent a complete divergence of results. For the purposes of this assessment, Golder considers that an RPD that is less than or equal to 30% represents good correlation between laboratory results.

Where one sample reported a concentration above the detection limit and the duplicate was below laboratory detection limits or vice versa, half the limit of detection has been used to calculate the RPD. Where both analytes reported concentrations below the laboratory detection limit, a nominal RPD value of less than 30% has been assigned.

The following field QA/QC samples were collected:

- Two trip blanks one sample per esky containing samples for volatile compounds
- One rinsate sample
   collected from water washed over the auger during drilling
- One field duplicate, and
- One field triplicate/intra-laboratory sample.

QA/QC criteria are summarised in Table G together with an assessment of whether the criteria have been met. Field duplicate, rinsate and trip blank results are included in Tables 3 and 4.

Table G: QA/QC summary

| Item                                               | Objective                                                                                                    | Summary of Results                                                                   | Compliance |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------|
| Calibration check of water quality meter           | Ensure water quality meter is calibrated within acceptable limits.                                           | Completed in full                                                                    | Yes        |
| Chain of Custody Records                           | Completed in full                                                                                            | Completed in full                                                                    | Yes        |
| Recovery and analysis of rinsate blanks            | No contamination of blanks                                                                                   | No contamination of rinsate blanks                                                   | Yes        |
| Recovery and analysis of trip blanks               | No contamination of blanks                                                                                   | No contamination of trip blanks                                                      | Yes        |
| Recovery and analysis of field replicate samples   | Collect replicate samples at a minimum rate of 10% and assess that RPDs are within ±30% for results >5 x LOR | >10% duplicates were<br>recovered, not all<br>RPDs were <30% for<br>results >5 x LOR | Note 1     |
| NATA-certification and approved analytical methods | Comply with reference                                                                                        | All complied                                                                         | Yes        |
| Sample preservation and holding times              | Completed in full                                                                                            | One sample exceedance for pH                                                         | Note 2     |
| Analysis of laboratory method blanks               | No contamination of blanks                                                                                   | No contamination of blanks                                                           | Yes        |
| Analysis of laboratory duplicates                  | RPDs <30% for results >5 x LOR                                                                               | All complied                                                                         | Yes        |
| Analysis of surrogate and spike recoveries         | Percentage recovery 5%                                                                                       | Some analyses did not comply                                                         | Note 3     |
| Frequency of Laboratory Duplicate Samples          | Frequency ≥ 10%                                                                                              | Some analyses did not meet frequency of laboratory duplication                       | Note 4     |



Notes:

- <sup>1</sup> RPDs greater than 30% for results greater than five times LOR were identified between two sets of primary and duplicate samples for chemical oxygen demand and between the primary and triplicate (intra-laboratory) for ammonia, chemical oxygen demand, total organic carbon, zinc, potassium and Perfluorooctane sulfonic acid (PFOS). There are no guidelines for chemical oxygen demand or total organic carbon, therefore, these outliers do not affect the outcomes of the investigation. Although zinc concentrations were higher in the secondary sample in one case, both samples exceeded the same guidelines, therefore this outlier also did not affect the outcomes of the investigation. No PFOS was detected in the secondary sample, therefore the primary sample was considered for the purposes of this investigation. In total, the RPD exceedances did not impact on the findings of this investigation.
- <sup>2</sup> The pH extraction holding time for Q00186-01 (intra-lab triplicate) was exceeded. The samples were not received at the lab until the following day, therefore exceeding the extraction time of six hours from time of sample collection. Normally, laboratory pH is not considered as field pH readings are used for assessment, therefore this holding time does not affect the outcomes of this investigation.
- <sup>3</sup> Surrogate exceedances were reported for PAH/Phenols and TRH silica gel clean-up for Q00186-01 (intra-lab triplicate). These recovery percentages were slightly below the criteria for the surrogate exceedances. As silica gel clean-up results were not considered due to the lack of TRH detections, this outlier does not affect the outcomes of the investigation.

Matrix spike exceedance was noted for sulfate for the intra-laboratory/triplicate sample due to background levels being greater than four times the spike level. This result does not impact the findings of this investigation as sulfate concentrations in the triplicate sample was comparable to the primary sample.

<sup>4</sup> Sample control frequency for Q00186-01 (intra-laboratory/triplicate) for phenols and TRH (silica gel) did not meet required laboratory frequency. As this was a triplicate sample and no detections were noted of these analytes in either the primary or secondary samples, this does not impact the findings of this investigation.

#### 8.0 SUMMARY

Five new groundwater wells were installed, gauged and sampled at the site (VB1, VB2, VB3, VB4 and VB5). The depth of well installation ranged from between 4.5 m and 5 m bgl. Three existing groundwater wells (BH101, BH02A, MB03A) located to the north of the site were also gauged. Depth to groundwater ranged between 1.953 (BH02A) and 2.884 (VB1) m bgl for the five newly installed groundwater wells and three existing wells. Groundwater elevations ranged from 19.786 m AHD (VB5) to 20.547 m AHD (BH101). The direction of the hydraulic head at the site was inferred to be towards the south-east and was consistent with expected regional groundwater flow.

Site soil comprised Sand and Silty Sand to a depth of 5 m bgl. No soil samples were scheduled for laboratory analysis as part of this groundwater assessment.

The pH in groundwater at the site was slightly acidic and below the acceptable ranges adopted for DER Fresh Water, Irrigation Water and Drinking Water (aesthetic) Guideline values.

Various nutrient concentrations were detected in groundwater at the site, with nitrate, nitrite, nitrogen, ammonia and phosphate exceeding applicable ADWG, DER Fresh Water and Irrigation Water Guideline values.

Various dissolved metal concentrations at the site exceeded several of the applicable Guideline values; specifically, aluminium, copper, iron and zinc.

No TRH, BTEX, PAH, phenols or herbicides were detected above laboratory reporting limits in groundwater at the site.

The standard PFAS analysis was undertaken for 28 compounds. Total oxidisable precursor (TOP) and total organo-fluorine (TOF) analysis was not undertaken. PFAS analysis reported detectable concentrations for the following compounds: PFOA, PFOS, PFHxS, Sum of PFHxS and PFOS, PFBA, PFHxA, PFHpA, PFPeA, PFPeS, and PFBS. Concentrations of PFHxS and PFOS (sum) exceeded the PFAS Ecological Freshwater Guideline for 99% species protection of 0.00023  $\mu$ g/L at all wells. Concentrations of PFHxS and PFOS (sum) exceeded the PFAS DOH Drinking Water Guideline of 0.07  $\mu$ g/L at VB1, VB3 and VB4.





#### 9.0 IMPORTANT INFORMATION

Your attention is drawn to the document titled – "Important Information Relating to this Report", which is included in Appendix G of this report. The statements presented in that document are intended to inform a reader of the report about its proper use. There are important limitations as to who can use the report and how it can be used. It is important that a reader of the report understands and has realistic expectations about those matters. The Important Information document does not alter the obligations Golder Associates has under the contract between it and its client.

#### 10.0 REFERENCES

ANZECC & ARMCANZ (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand.

DER (2014). Contaminated Sites Guidelines: Assessment and Management of Contaminated Sites, December, 2014. Department of Environment Regulation, Perth W.A.

DER (2017). Interim Guideline on the Assessment and Management of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS), Contaminated Sites Guideline, Department of Environment Regulation, January 2017.

Department of Water. *Hydrogeological Atlas*. Government of Western Australia. Available at: http://atlases.water.wa.gov.au/idelve/hydroatlas/.



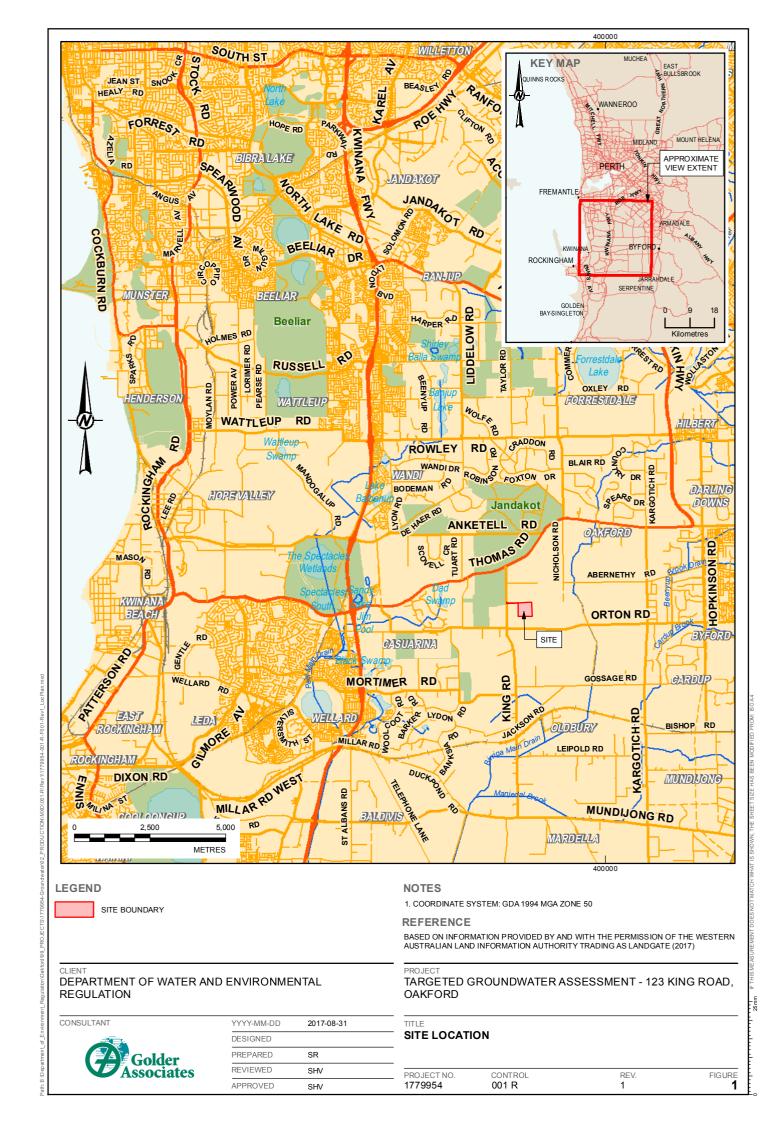


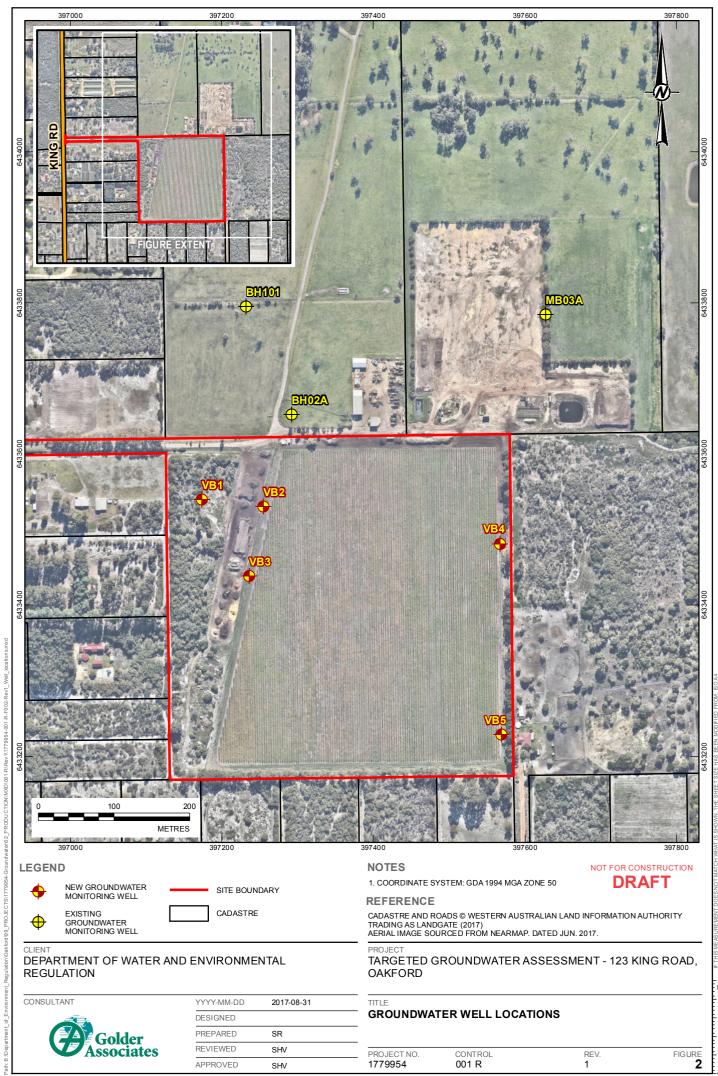
# **Report Signature Page**

#### **GOLDER ASSOCIATES PTY LTD**

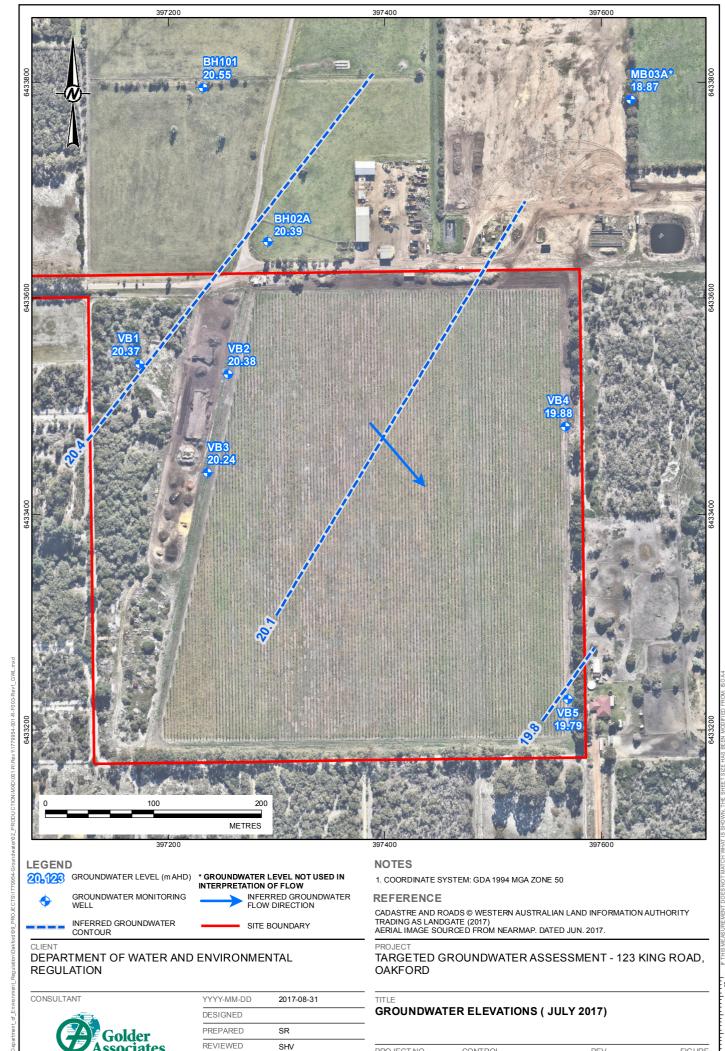
. . .

Sarah Garvey Senior Environmental Consultant


CLB:SHG/IYK/hn


A.B.N. 64 006 107 857

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.


 $\label{thm:contam} $$ \gap\perth\jobs\env\2017 - contam\ sites\1779954 - der\ groundwater\ oakford\correspondence\ out\1779954-001-r-rev1.docx - der\ ground\correspondence\ out\1779954-001-r-rev1.docx - d$ 







E E C



PROJECT NO.

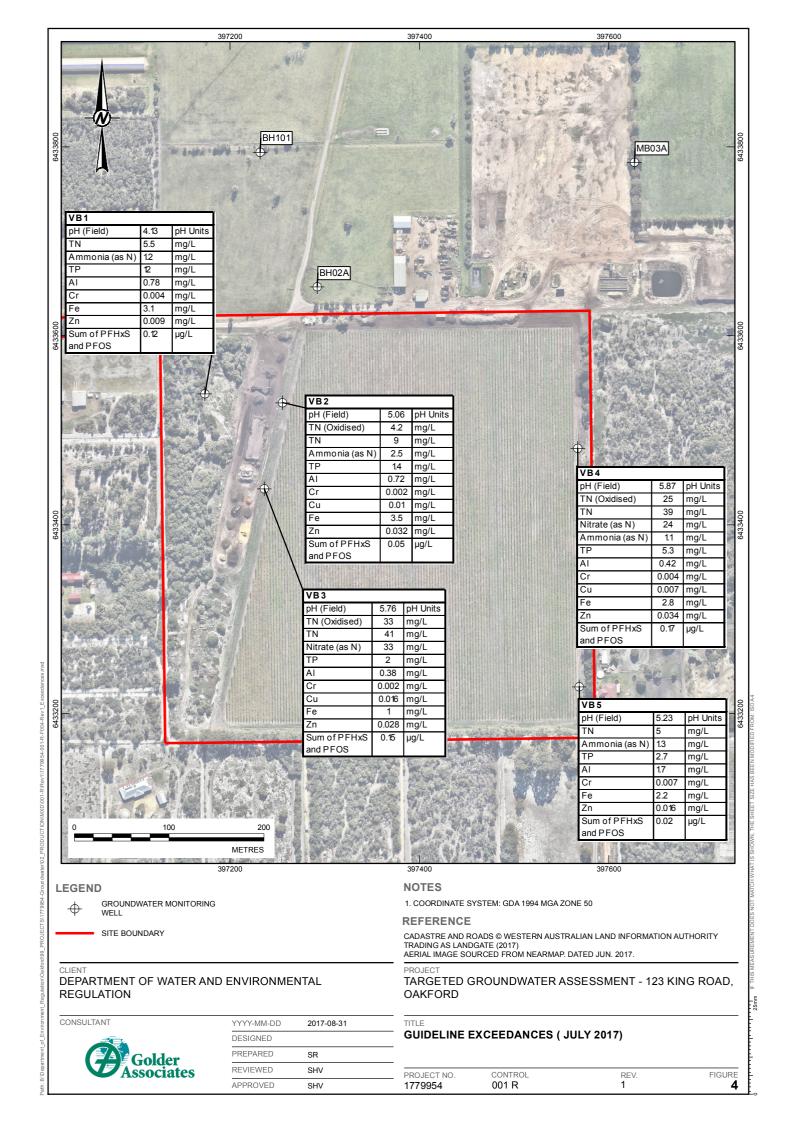
1779954

CONTROL

001 R

**Associates** 

APPROVED


SHV

FIGURE

3

REV.

1





| Well   | Easting<br>(MGAZ50) | Northing<br>(MGAZ50) | Ground<br>Elevation<br>(m AHD) | TOC<br>Elevation<br>(m AHD) | Date       | Water<br>level (m<br>btoc) | Water<br>Elevation<br>(m AHD) | Product Thickness<br>(m) | Water Colour      |
|--------|---------------------|----------------------|--------------------------------|-----------------------------|------------|----------------------------|-------------------------------|--------------------------|-------------------|
| VB1*   | 397173.493          | 6433538.709          | 22.400                         | 23.253                      | 10/07/2017 | 2.884                      | 20.369                        | not observed             | Pale brown/orange |
| VB2*   | 397255.399          | 6433529.426          | 22.191                         | 23.000                      | 10/07/2017 | 2.622                      | 20.378                        | not observed             | Pale brown/orange |
| VB3*   | 397236.123          | 6433437.989          | 22.219                         | 23.059                      | 10/07/2017 | 2.816                      | 20.243                        | not observed             | Pale brown/orange |
| VB4*   | 397567.144          | 6433481.030          | 21.333                         | 22.134                      | 10/07/2017 | 2.257                      | 19.877                        | not observed             | Pale brown        |
| VB5*   | 397569.036          | 6433228.551          | 21.265                         | 21.993                      | 10/07/2017 | 2.207                      | 19.786                        | not observed             | Pale brown        |
| BH101^ |                     |                      | 22.050                         | 22.584                      | 10/07/2017 | 2.037                      | 20.547                        | not observed             |                   |
| BH02A^ |                     |                      | 21.800                         | 22.347                      | 10/07/2017 | 1.953                      | 20.394                        | not observed             |                   |
| MB03A^ |                     |                      | 20.400                         | 20.870                      | 10/07/2017 | 2.002                      | 18.868                        | not observed             |                   |

#### Note:

- \* Newly installed well
- ^ Existing well. Gauged during sampling round.

TOC - infers Top of PVC



| Field Parameters  Deptit Dissc. Elect pH (F Redo Temp Sample Quality Parameters  Elect pH (L Total Sodits Potas Calci Magr Chlor Sulfa Bicar Carb Hydre Total Nitrot Nitros Amm Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | perical Name  spith to groundwater (measured) pith to bottom of well ssolved Oxygen (Field) (Filtered) sectrolytic Conductivity (Field) ((Field) dox Potential (Field) mp (Field) sectrical Conductivity @ 25°C ((Lab) tal Dissolved Solids @180°C dium tassium licium ggnesium licide lifate (as SO <sub>4</sub> ) carbonate Alkalinity (as CaCO <sub>3</sub> ) rrbonate Alkalinity (as CaCO <sub>3</sub> ) trate (as N) rite (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | output unit  m TOC m TOC mg/L µS/cm pH_Units mV °C µS/cm pH_unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L         |                                                                  | (DWER) DoH Non-Potable Groundwater Use (NPUG) | ANZECC 2000 Livestock<br>Drinking Water Trigger<br>Value (low risk) <sup>A</sup> | DWER AWDG (2011) Drinking Water Aesthetic Value  6.5-8.5 | DWER AWDG (2011)<br>Drinking Water Health<br>Value | DWER Fresh Water   | Location_Code Field_D Sampled Date Lab_Report_Number  DWER Long-term Irrigation Water | VB1<br>Q00185-6<br>10/07/2017<br>553774<br>2.884<br>5.375<br>0.25<br>404.3 | VB2<br>Q00185-5<br>10/07/2017<br>553774<br>2.622<br>5.41<br>0.24<br>911<br>5.06 | VB3 Q00185-4 10/07/2017 553774  2.816 5.38 2.04 824 5.76 | VB4<br>Q00185-1<br>10/07/2017<br>553774<br>2.257<br>5.1<br>0.31<br>1300<br>5.87 | VB5 Q00185-2 10/07/2017 553774  2.207 5.65 0.25 715 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|--------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------|
| Field Parameters  Deptit Deptit Disson Elect pH (Final Redo Tempit Control Final Red F | ppth to groundwater (measured) ppth to bottom of well ssolved Oxygen (Field) (Filtered) ectrolytic Conductivity (Field) (Field) dox Potential (Field) mp (Field) ectrical Conductivity @ 25°C I (Lab) tal Dissolved Solids @180°C dium tassium elicium ggnesium loride lifate (as SO <sub>4</sub> ) arrbonate Alkalinity (as CaCO <sub>3</sub> ) rrbonate Alkalinity (as CaCO <sub>3</sub> ) droxide Alkalinity (as CaCO <sub>3</sub> ) rate (as N) rrite (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m TOC m TOC mg/L μS/cm pH_Units mV °C μS/cm pH_unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                      |                                                                  |                                               | Drinking Water Trigger                                                           | Drinking Water Aesthetic Value  6.5-8.5                  | Drinking Water Health                              |                    | Lab_Report_Number  DWER Long-term Irrigation Water                                    | 2.884<br>5.375<br>0.25<br>404.3                                            | 2.622<br>5.41<br>0.24<br>911                                                    | 2.816<br>5.38<br>2.04<br>824                             | 2.257<br>5.1<br>0.31<br>1300                                                    | 2.207<br>5.65<br>0.25                               |
| Field Parameters  Deptit Deptit Disson Elect pH (F Redo Temp)  Sample Quality Parameters  Elect pH (L Total Sodiu Potas Calci Magr Chlor Sulfa Bicar Carbi Hydre Total Nitrat Nitrat Nitrat Nitro Amm Total Nitrot Amm Total Nitrot Nitrot Amm Total Nitrot Nitrot Nitrot Amm Total Nitrot | ppth to groundwater (measured) ppth to bottom of well ssolved Oxygen (Field) (Filtered) ectrolytic Conductivity (Field) (Field) dox Potential (Field) mp (Field) ectrical Conductivity @ 25°C I (Lab) tal Dissolved Solids @180°C dium tassium elicium ggnesium loride lifate (as SO <sub>4</sub> ) arrbonate Alkalinity (as CaCO <sub>3</sub> ) rrbonate Alkalinity (as CaCO <sub>3</sub> ) droxide Alkalinity (as CaCO <sub>3</sub> ) rate (as N) rrite (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m TOC m TOC mg/L μS/cm pH_Units mV °C μS/cm pH_unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                      |                                                                  |                                               | Drinking Water Trigger                                                           | Drinking Water Aesthetic Value  6.5-8.5                  | Drinking Water Health                              |                    | DWER Long-term Irrigation Water                                                       | 2.884<br>5.375<br>0.25<br>404.3                                            | 2.622<br>5.41<br>0.24<br>911                                                    | 2.816<br>5.38<br>2.04<br>824                             | 2.257<br>5.1<br>0.31<br>1300                                                    | 2.207<br>5.65<br>0.25                               |
| Field Parameters  Deptit Deptit Disson Elect pH (F Redo Temp   F F Redo Temp   | ppth to groundwater (measured) ppth to bottom of well ssolved Oxygen (Field) (Filtered) ectrolytic Conductivity (Field) (Field) dox Potential (Field) mp (Field) ectrical Conductivity @ 25°C I (Lab) tal Dissolved Solids @180°C dium tassium elicium ggnesium loride lifate (as SO <sub>4</sub> ) arrbonate Alkalinity (as CaCO <sub>3</sub> ) rrbonate Alkalinity (as CaCO <sub>3</sub> ) droxide Alkalinity (as CaCO <sub>3</sub> ) rate (as N) rrite (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m TOC m TOC mg/L μS/cm pH_Units mV °C μS/cm pH_unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                      |                                                                  |                                               | Drinking Water Trigger                                                           | Drinking Water Aesthetic Value  6.5-8.5                  | Drinking Water Health                              |                    |                                                                                       | 5.375<br>0.25<br>404.3                                                     | 5.41<br>0.24<br>911                                                             | 5.38<br>2.04<br>824                                      | 5.1<br>0.31<br>1300                                                             | 5.65<br>0.25                                        |
| Field Parameters  Deptit Deptit Disson Elect pH (F Redo Temp   F F Redo Temp   | ppth to groundwater (measured) ppth to bottom of well ssolved Oxygen (Field) (Filtered) ectrolytic Conductivity (Field) (Field) dox Potential (Field) mp (Field) ectrical Conductivity @ 25°C I (Lab) tal Dissolved Solids @180°C dium tassium elicium ggnesium loride lifate (as SO <sub>4</sub> ) arrbonate Alkalinity (as CaCO <sub>3</sub> ) rrbonate Alkalinity (as CaCO <sub>3</sub> ) droxide Alkalinity (as CaCO <sub>3</sub> ) rate (as N) rrite (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m TOC m TOC mg/L μS/cm pH_Units mV °C μS/cm pH_unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                      |                                                                  |                                               |                                                                                  |                                                          |                                                    | 6.5-8.5            | 6-8.5                                                                                 | 5.375<br>0.25<br>404.3                                                     | 5.41<br>0.24<br>911                                                             | 5.38<br>2.04<br>824                                      | 5.1<br>0.31<br>1300                                                             | 5.65<br>0.25                                        |
| Depti Disso Disso Disso Elect pH (F Redo Temp Sample Quality Parameters Elect pH (L Total Sodic Potas Calci Magn Chlor Sulfa Bicar Carb Hydra Total Nitrat Nitrite Nitroo Amm Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pth to bottom of well ssolved Oxygen (Field) (Filtered) ectrolytic Conductivity (Field) (I (Field) (I (Field)  mp (Field) ectrical Conductivity @ 25°C (I (Lab) tatal Dissolved Solids @180°C dium tassium licium ignesium licloride lifate (as SO <sub>4</sub> ) earbonate Alkalinity (as CaCO <sub>3</sub> ) rbonate Alkalinity (as CaCO <sub>3</sub> ) droi Alkalinity (as CaCO <sub>3</sub> ) trate (as N) rite (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m TOC mg/L μS/cm pH_Units mV °C μS/cm pH_unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                            |                                                                  |                                               |                                                                                  |                                                          |                                                    | 6.5-8.5            | 6-8.5                                                                                 | 5.375<br>0.25<br>404.3                                                     | 5.41<br>0.24<br>911                                                             | 5.38<br>2.04<br>824                                      | 5.1<br>0.31<br>1300                                                             | 5.65<br>0.25                                        |
| Disso Elect pH (F Redoc Temp Sample Quality Parameters Elect pH (L Total Sodiu Potas Caloi Magn Chlor Sulfa Bicar Carb Hydra Total Nitrat Nitros Amm Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ssolved Oxygen (Field) (Filtered) setrolytic Conductivity (Field) (Field) (Field) dox Potential (Field) mp (Field) setrical Conductivity @ 25°C (Lab) tal Dissolved Solids @180°C dium tassium slicium signesium sloride lifate (as SO <sub>4</sub> ) carbonate Alkalinity (as CaCO <sub>3</sub> ) rrbonate Alkalinity (as CaCO <sub>3</sub> ) tratal Alkalinity (as CaCO <sub>3</sub> ) trate (as N) rrite (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/L μS/cm pH_Units mV °C μS/cm pH_unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                  | -<br>-<br>-<br>1<br>0.1<br>10<br>0.5<br>0.5<br>0.5<br>0.5        |                                               |                                                                                  |                                                          |                                                    | 6.5-8.5            | 6-8.5                                                                                 | 0.25<br>404.3                                                              | 0.24<br>911                                                                     | 2.04<br>824                                              | 0.31<br>1300                                                                    | 0.25                                                |
| Elect pH (F Redo Temp Sample Quality Parameters  Elect pH (L Total Sodiu Potas Calci Magr Chior Sulfa Bicar Carb Hydra Total Nitrot Amm Total Nitrot Nitrot Amm Total Nitrot Nitrot Nitrot Amm Total Nitrot Nitrot Nitrot Amm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | extrolytic Conductivity (Field) ((Field) (dox Potential (Field) mp (Field) extrical Conductivity @ 25°C ((Lab) tal Dissolved Solids @180°C ditum tassium elicium ggnesium elicide lifate (as SO <sub>4</sub> ) earbonate Alkalinity (as CaCO <sub>3</sub> ) erbonate Alkalinity (as CaCO <sub>3</sub> ) droxide Alkalinity (as CaCO <sub>3</sub> ) trate (as N) rite (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | μS/cm pH_Units mV °C μS/cm pH_unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                       | -<br>-<br>-<br>1<br>0.1<br>10<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5 |                                               |                                                                                  |                                                          |                                                    | 6.5-8.5            | 6-8.5                                                                                 | 404.3                                                                      | 911                                                                             | 824                                                      | 1300                                                                            |                                                     |
| pH (F Redo Temp Redo Temp Sample Quality Parameters  Elect pH (L Total Sodiu Potas Calci Magr Chlor Sulfa Bicar Carbi Hydra Total Nitrat Nitrite Nitrog Amm Total Nitrot Interes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I (Field)  I (Field)  I (Field)  I (Field)  I (Field)  I (Field)  I (Lab)   | pH_Units mV °C pH_unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                                   | -<br>-<br>1<br>0.1<br>10<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5      |                                               |                                                                                  |                                                          |                                                    | 6.5-8.5            | 6-8.5                                                                                 |                                                                            |                                                                                 |                                                          |                                                                                 |                                                     |
| Sample Quality Parameters  Elect pH (L Total Sodiu Potas Calci Magr Chlor Sulfa Bicar Carb Hydra Total Nitrot Amm Total Nitrot N | dox Potential (Field)  mp (Field)  setrical Conductivity @ 25°C  I (Lab)  tata Dissolved Solids @180°C  dium  tassium  licium  agnesium  loride  lifate (as SO <sub>4</sub> )  carbonate Alkalinity (as CaCO <sub>3</sub> )  rbonate Alkalinity (as CaCO <sub>3</sub> )  tata Alkalinity (as CaCO <sub>3</sub> )  tata Alkalinity (as CaCO <sub>3</sub> )  rate (as N)  rite (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mV  °C  µS/cm  pH_unit  mg/L  mg/L | 1<br>0.1<br>10<br>0.5<br>0.5<br>0.5<br>0.5<br>1<br>5             |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       |                                                                            |                                                                                 | 3.70                                                     | 3.07                                                                            | 5.23                                                |
| Sample Quality Parameters  Elect pH (L Total Sodiu Potas Calci Magr Chior Sulfa Bicar Carb Hydra Total Nitrot Anitrot Nitrot Nitrot Nitrot Anitrot Nitrot Nitro | ectrical Conductivity @ 25°C  ((Lab)  tal Dissolved Solids @180°C  didium  tassium  tatorium  tassium  tatorium  tassium  tatorium   | μS/cm pH_unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                                            | 1<br>0.1<br>10<br>0.5<br>0.5<br>0.5<br>0.5<br>1<br>5             |                                               |                                                                                  | 6.5-8.5                                                  |                                                    |                    |                                                                                       | -51.3                                                                      | -31.4                                                                           | -30.1                                                    | -157.9                                                                          | -158.6                                              |
| pH (L Total Sodiu Potas Calci Magr Chlor Sulfa Bicar Carb Hydra Total Nitrat Nitros Amm Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I (Lab)  I ( | pH_unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                                                  | 10<br>0.5<br>0.5<br>0.5<br>0.5<br>1                              |                                               |                                                                                  | 6.5-8.5                                                  |                                                    |                    |                                                                                       | 18.3                                                                       | 20.1                                                                            | 19.5                                                     | 19.2                                                                            | 18.2                                                |
| Total Sodi: Potas Calci Magn Chlor Sulfa Bicar Carbr Hydrd Total Nitrat Nitriti Nitrog Amm Total Nitrog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tal Dissolved Solids @180°C dium tlassium tlassium licitium agnesium loride lifate (as SO <sub>4</sub> ) zarbonate Alkalinity (as CaCO <sub>3</sub> ) urbonate Alkalinity (as CaCO <sub>3</sub> ) tronate Alkalinity (as CaCO <sub>3</sub> ) tal Alkalinity (as CaCO <sub>3</sub> ) trate (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                                                          | 10<br>0.5<br>0.5<br>0.5<br>0.5<br>1                              |                                               |                                                                                  | 6.5-8.5                                                  |                                                    |                    |                                                                                       | 400                                                                        | 870                                                                             | 780                                                      | 1100                                                                            | 680                                                 |
| Sodiu Potas Calci Magri Chlor Sulfa Bicar Carbr Hydra Nitrat Nitriti Nitrog Amm Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dium tassium licium agnesium loride Iffate (as SO <sub>4</sub> ) carbonate Alkalinity (as CaCO <sub>3</sub> ) rrbonate Alkalinity (as CaCO <sub>3</sub> ) data Alkalinity (as CaCO <sub>3</sub> ) tal Alkalinity (as CaCO <sub>3</sub> ) trate (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L                                                             | 0.5<br>0.5<br>0.5<br>0.5<br>1                                    |                                               |                                                                                  |                                                          |                                                    | 6.5-8.5            | <u>6-8.5</u>                                                                          | <u>4.2</u>                                                                 | <u>5.5</u>                                                                      | 6.2                                                      | 6.2                                                                             | <u>5.3</u>                                          |
| Potas Calci Magr Chlor Sulfa Bicar Carbu Hydro Total Nitrat Nitrot Amm Total Nitrot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tassium  Idcium  Ignesium  Ignesium  Idride  Ifate (as SO <sub>4</sub> )  carbonate Alkalinity (as CaCO <sub>3</sub> )  rbonate Alkalinity (as CO <sub>3</sub> )  droxide Alkalinity (as CaCO <sub>3</sub> )  tata Alkalinity (as CaCO <sub>3</sub> )  rate (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                                                          | 0.5<br>0.5<br>0.5<br>1<br>5                                      |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | 570<br>40                                                                  | 690<br>60                                                                       | 630<br>35                                                | 1100<br>91                                                                      | 750<br>70                                           |
| Calci Magr Chlor Sulfa Bicar Carb Hydr Total Nitrat Nitros Amm Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ilcium  Ignesium  Iloride  Iffate (as SO <sub>4</sub> )  Irarbonate Alkalinity (as CaCO <sub>3</sub> )  Irbonate Alkalinity (as CaCO <sub>3</sub> )  Irbonate Alkalinity (as CaCO <sub>3</sub> )  Irdoxide Alkalinity (as CaCO <sub>3</sub> )  Irate (as N)  Irate (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                                                               | 0.5<br>0.5<br>1<br>5                                             |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | 18                                                                         | 29                                                                              | 49                                                       | 86                                                                              | 37                                                  |
| Magr<br>Chlor<br>Sulfa<br>Bicar<br>Carbr<br>Hydra<br>Total<br>Nitrat<br>Nitrot<br>Nitrot<br>Amm<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ignesium Iloride Ilfate (as SO <sub>4</sub> ) zarbonate Alkalinity (as CaCO <sub>3</sub> ) Irbonate Alkalinity (as CC <sub>3</sub> ) Irdoxide Alkalinity (as CaCO <sub>3</sub> ) Idroxide Alkalinity (as CaCO <sub>3</sub> ) Ital Alkalinity (as CaCO <sub>3</sub> ) Ital (as N) Irite (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L                                                                             | 0.5<br>1<br>5                                                    |                                               | 1000                                                                             |                                                          |                                                    |                    |                                                                                       | 3.9                                                                        | 35                                                                              | 42                                                       | 41                                                                              | 8.5                                                 |
| Sulfa<br>Bicar<br>Carbi<br>Hydro<br>Total<br>Nitrat<br>Nitriti<br>Nitro<br>Ama<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ifate (as SO <sub>4</sub> ) carbonate Alkalinity (as CaCO <sub>3</sub> ) rbonate Alkalinity (as CO <sub>3</sub> ) droxide Alkalinity (as CaCO <sub>3</sub> ) tal Alkalinity (as CaCO <sub>3</sub> ) tal Alkalinity (as CaCO <sub>3</sub> ) rate (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L<br>mg/L<br>mg/L                                                                                             | 5                                                                |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | 9.5                                                                        | 25                                                                              | 16                                                       | 17                                                                              | 8.1                                                 |
| Bicar<br>Carbi<br>Hydro<br>Total<br>Nitrat<br>Nitros<br>Amm<br>Total<br>Nitros                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | carbonate Alkalinity (as CaCO <sub>3</sub> ) rbonate Alkalinity (as CO <sub>2</sub> ) droxide Alkalinity (as CaCO <sub>3</sub> ) droxide Alkalinity (as CaCO <sub>3</sub> ) tatal Alkalinity (as CaCO <sub>3</sub> ) rate (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L<br>mg/L                                                                                                     | 5                                                                | 250                                           |                                                                                  | 250                                                      |                                                    |                    |                                                                                       | 77                                                                         | 150                                                                             | 44                                                       | 140                                                                             | 140                                                 |
| Carb<br>Hydro<br>Total<br>Nitrat<br>Nitros<br>Amm<br>Total<br>Nitros                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rrbonate Alkalinity (as CO <sub>3</sub> ) droxide Alkalinity (as CaCO <sub>3</sub> ) tal Alkalinity (as CaCO <sub>3</sub> ) tal Alkalinity (as CaCO <sub>3</sub> ) trate (as N) trite (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                             |                                                                  | 1000                                          | 1000                                                                             | 250                                                      | 500                                                |                    |                                                                                       | 31                                                                         | 180                                                                             | 130                                                      | 190                                                                             | 63                                                  |
| Hydro<br>Total<br>Nitrat<br>Nitrite<br>Nitrog<br>Amm<br>Total<br>Nitrog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | droxide Alkalinity (as CaCO <sub>3</sub> ) tal Alkalinity (as CaCO <sub>3</sub> ) trate (as N) trite (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  | 20                                                               |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | <20                                                                        | 25                                                                              | 68                                                       | 110                                                                             | 29                                                  |
| Total Nitrat Nitrit Nitro Amm Total Nitro Nitro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tal Alkalinity (as CaCO <sub>3</sub> ) trate (as N) trite (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L                                                                                                             | 10                                                               |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | <10<br><10                                                                 | <10<br><10                                                                      | <10<br><10                                               | <10<br><10                                                                      | <10<br><10                                          |
| Nitrat<br>Nitrite<br>Nitrog<br>Amm<br>Total<br>Nitrog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rate (as N) rite (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                                                                                                             | 20                                                               |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | <20                                                                        | 20                                                                              | 56                                                       | 92                                                                              | 24                                                  |
| Nitrite<br>Nitrog<br>Amm<br>Total<br>Nitrog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rite (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/L                                                                                                             | 0.02                                                             | 110                                           |                                                                                  |                                                          | 11                                                 |                    |                                                                                       | <0.02                                                                      | 4.1                                                                             | 33                                                       | 24                                                                              | <0.02                                               |
| Amm<br>Total<br>Nitrog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/L                                                                                                             | 0.02                                                             | 9                                             |                                                                                  |                                                          | 0.9                                                |                    |                                                                                       | <0.02                                                                      | 0.16                                                                            | 0.04                                                     | 0.67                                                                            | <0.02                                               |
| Total<br>Nitro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rogen (Total Oxidised)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L                                                                                                             | 0.05                                                             |                                               |                                                                                  |                                                          |                                                    | 0.15"              |                                                                                       | <0.05                                                                      | 4.2                                                                             | 33                                                       | 25                                                                              | <0.05                                               |
| Nitrog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nmonia (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/L                                                                                                             | 0.01                                                             | 4                                             |                                                                                  | 0.4                                                      |                                                    | 2.57~              |                                                                                       | 1.2                                                                        | 2.5                                                                             | 0.36                                                     | 1.1                                                                             | 1.3                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tal Kjeldahl Nitrogen (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                             | 0.2                                                              |                                               |                                                                                  |                                                          |                                                    | 4.00               |                                                                                       | 5.5                                                                        | 4.8                                                                             | 8.1                                                      | 14                                                                              | 5                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rogen (Total)<br>eactive Phosphorus (as P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L<br>mg/L                                                                                                     | 0.2                                                              |                                               |                                                                                  |                                                          |                                                    | 1.2"               | <u>5</u>                                                                              | <u>5.5</u><br>11                                                           | <u>9</u><br>1.3                                                                 | <u>41</u><br>2.4                                         | <u>39</u><br>5.1                                                                | <b>5</b><br>3.1                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tal Phosphorus (as P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/L                                                                                                             | 0.05                                                             |                                               |                                                                                  |                                                          |                                                    | 0.065"             | <u>0.05</u>                                                                           | 12                                                                         | 1.4                                                                             | 2.4                                                      | 5.1<br>5.3                                                                      | 2.7                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ological Oxygen Demand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L                                                                                                             | 5                                                                |                                               |                                                                                  |                                                          |                                                    | 0.000              | 9.00                                                                                  | <5                                                                         | <5                                                                              | <5                                                       | <5                                                                              | <5                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | emical Oxygen Demand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L                                                                                                             | 25                                                               |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | 350                                                                        | 300                                                                             | 260                                                      | 480                                                                             | 270                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tal Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/L                                                                                                             | 5                                                                |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | 240                                                                        | 120                                                                             | 110                                                      | 200                                                                             | 160                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rdness (as CaCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L                                                                                                             | 5                                                                |                                               |                                                                                  | 200                                                      |                                                    |                    |                                                                                       | 49                                                                         | 190                                                                             | 170                                                      | 170                                                                             | 54                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uminium (Filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/L                                                                                                             | 0.05                                                             | 0.2                                           | 5                                                                                | 0.2                                                      | 0.04                                               | 0.055              | <u>5</u>                                                                              | 0.78                                                                       | 0.72                                                                            | 0.38                                                     | 0.42                                                                            | 1.7                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | senic (Filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L<br>mg/L                                                                                                     | 0.001                                                            | 0.1<br>0.02                                   | 0.5<br>0.01                                                                      |                                                          | 0.01<br>0.002                                      | 0.013 <sup>#</sup> | <u>0.1</u><br>0.01                                                                    | <0.001<br><0.0002                                                          | <0.001<br><0.0002                                                               | 0.003<br><0.0002                                         | 0.004<br><0.0002                                                                | <0.001<br><0.0002                                   |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | romium (Filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/L                                                                                                             | 0.0002                                                           | 0.5**                                         | 1                                                                                |                                                          | 0.002                                              | 0.0002             | 0.1                                                                                   | 0.004                                                                      | 0.002                                                                           | 0.002                                                    | 0.0002                                                                          | 0.007                                               |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | opper (Filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L                                                                                                             | 0.001                                                            | 20                                            | 0.4                                                                              | 1                                                        | 2                                                  | 0.0014∞            | 0.2                                                                                   | <0.001                                                                     | 0.01                                                                            | 0.016                                                    | 0.007                                                                           | <0.001                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n (Filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                             | 0.05                                                             | 0.3                                           | NT                                                                               | 0.3                                                      |                                                    | 0.3                | 0.2                                                                                   | <u>3.1</u>                                                                 | 3.5                                                                             | <u>1</u>                                                 | 2.8                                                                             | 2.2                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ad (Filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/L                                                                                                             | 0.001                                                            | 0.1                                           | 0.1                                                                              |                                                          | 0.01                                               | 0.0034∞            | <u>2</u>                                                                              | <0.001                                                                     | 0.002                                                                           | 0.001                                                    | 0.002                                                                           | <0.001                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ercury (Filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/L                                                                                                             | 0.0001                                                           | 0.01                                          | 0.002                                                                            |                                                          | 0.001                                              | 0.00006            | <u>0.002</u>                                                                          | <0.0001                                                                    | <0.0001                                                                         | <0.0001                                                  | <0.0001                                                                         | <0.0001                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ckel (Filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                                                                                                             | 0.001                                                            | 0.2                                           | 1<br>20                                                                          | 3                                                        | 0.02                                               | 0.011∞<br>0.008∞   | <u>0.2</u>                                                                            | 0.004<br><b>0.009</b>                                                      | 0.006<br><b>0.032</b>                                                           | 0.009<br><b>0.028</b>                                    | 0.007<br><b>0.034</b>                                                           | 0.005<br><b>0.016</b>                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RH C <sub>6</sub> -C <sub>9</sub> Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L<br>mg/L                                                                                                     | 0.005                                                            | 3                                             | 20                                                                               | 3                                                        |                                                    | 0.006∞             | <u> </u>                                                                              | <0.02                                                                      | <0.02                                                                           | <0.02                                                    | <0.02                                                                           | <0.02                                               |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RH C <sub>10</sub> -C <sub>14</sub> Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                             | 0.05                                                             |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | <0.05                                                                      | <0.05                                                                           | <0.05                                                    | < 0.05                                                                          | <0.05                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RH C <sub>15</sub> -C <sub>28</sub> Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                             | 0.1                                                              |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | <0.1                                                                       | <0.1                                                                            | <0.1                                                     | <0.1                                                                            | <0.1                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RH C <sub>29</sub> -C <sub>36</sub> Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                             | 0.1                                                              |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | <0.1                                                                       | <0.1                                                                            | <0.1                                                     | <0.1                                                                            | <0.1                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RH+C <sub>10</sub> -C <sub>36</sub> (Sum of total) (Lab Reported)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/L                                                                                                             | 0.1                                                              |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | <0.1                                                                       | <0.1                                                                            | <0.1                                                     | <0.1                                                                            | <0.1                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RH C <sub>6</sub> -C <sub>10</sub> Fraction F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L                                                                                                             | 0.02                                                             |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | <0.02                                                                      | <0.02                                                                           | <0.02                                                    | <0.02                                                                           | <0.02                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RH C <sub>6</sub> -C <sub>10</sub> Fraction Less BTEX F1 RH >C <sub>10</sub> -C <sub>16</sub> Fraction F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/L<br>mg/L                                                                                                     | 0.02                                                             |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | <0.02<br><0.05                                                             | <0.02<br><0.05                                                                  | <0.02<br><0.05                                           | <0.02<br><0.05                                                                  | <0.02<br><0.05                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RH >C <sub>10</sub> -C <sub>16</sub> Fraction F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L                                                                                                             | 0.05                                                             |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | <0.05                                                                      | <0.05                                                                           | <0.05                                                    | <0.05                                                                           | <0.05                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RH >C <sub>16</sub> -C <sub>34</sub> Fraction F3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L                                                                                                             | 0.1                                                              |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | <0.1                                                                       | <0.1                                                                            | <0.1                                                     | <0.1                                                                            | <0.1                                                |
| TRH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RH >C <sub>34</sub> -C <sub>40</sub> Fraction F4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L                                                                                                             | 0.1                                                              |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | <0.1                                                                       | <0.1                                                                            | <0.1                                                     | <0.1                                                                            | <0.1                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/L                                                                                                             | 0.001                                                            | 0.01                                          |                                                                                  |                                                          | 0.001                                              | 0.95               |                                                                                       | <0.001                                                                     | <0.001                                                                          | <0.001                                                   | <0.001                                                                          | <0.001                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | luene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/L                                                                                                             | 0.001                                                            | 0.025                                         |                                                                                  | 0.025                                                    | 0.8                                                |                    |                                                                                       | <0.001                                                                     | <0.001                                                                          | <0.001                                                   | <0.001                                                                          | <0.001                                              |
| I — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L                                                                                                             | 0.001                                                            | 0.003                                         |                                                                                  | 0.003                                                    | 0.3                                                | 0.2                |                                                                                       | <0.001<br><0.002                                                           | <0.001<br><0.002                                                                | <0.001<br><0.002                                         | <0.001<br><0.002                                                                | <0.001<br><0.002                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lenes (m & p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/L<br>mg/L                                                                                                     | 0.002                                                            |                                               |                                                                                  |                                                          |                                                    | 0.2<br>0.35        |                                                                                       | <0.002                                                                     | <0.002                                                                          | <0.002                                                   | <0.002                                                                          | <0.002                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lenes (Sum of total) (Lab Reported)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L                                                                                                             | 0.001                                                            | 0.02                                          |                                                                                  | 0.02                                                     | 0.6                                                | 0.00               |                                                                                       | <0.001                                                                     | <0.001                                                                          | <0.003                                                   | <0.001                                                                          | <0.001                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | enaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L                                                                                                             | 0.001                                                            |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | <0.001                                                                     | <0.001                                                                          | <0.001                                                   | <0.001                                                                          | <0.001                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | enaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                             | 0.001                                                            |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | <0.001                                                                     | <0.001                                                                          | <0.001                                                   | <0.001                                                                          | <0.001                                              |
| l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | thracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/L                                                                                                             | 0.001                                                            |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | <0.001                                                                     | <0.001                                                                          | <0.001                                                   | <0.001                                                                          | <0.001                                              |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | enz(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L                                                                                                             | 0.001                                                            | 0.0004                                        |                                                                                  |                                                          | 0.0000                                             |                    |                                                                                       | <0.001                                                                     | <0.001                                                                          | <0.001                                                   | <0.001                                                                          | <0.001                                              |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L<br>mg/L                                                                                                     | 0.001                                                            | 0.0001                                        |                                                                                  |                                                          | 0.00001                                            |                    |                                                                                       | <0.001<br><0.001                                                           | <0.001<br><0.001                                                                | <0.001<br><0.001                                         | <0.001<br><0.001                                                                | <0.001<br><0.001                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | enzo(b)&(j)fluoranthene<br>enzo(g,h,i)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L<br>mg/L                                                                                                     | 0.001                                                            |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | <0.001                                                                     | <0.001                                                                          | <0.001                                                   | <0.001                                                                          | <0.001                                              |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | enzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L                                                                                                             | 0.001                                                            |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | <0.001                                                                     | <0.001                                                                          | <0.001                                                   | <0.001                                                                          | <0.001                                              |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L                                                                                                             | 0.001                                                            |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | <0.001                                                                     | <0.001                                                                          | <0.001                                                   | <0.001                                                                          | <0.001                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | penz(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L                                                                                                             | 0.001                                                            |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | <0.001                                                                     | <0.001                                                                          | <0.001                                                   | <0.001                                                                          | <0.001                                              |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L                                                                                                             | 0.001                                                            |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | <0.001                                                                     | <0.001                                                                          | <0.001                                                   | <0.001                                                                          | <0.001                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L                                                                                                             | 0.001                                                            |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | <0.001                                                                     | <0.001                                                                          | <0.001                                                   | <0.001                                                                          | <0.001                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | deno(1,2,3-c,d)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/L                                                                                                             | 0.001                                                            |                                               |                                                                                  |                                                          |                                                    | 0.046              |                                                                                       | <0.001                                                                     | <0.001                                                                          | <0.001                                                   | <0.001                                                                          | <0.001                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | phthalene<br>enanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L<br>mg/L                                                                                                     | 0.001                                                            |                                               |                                                                                  |                                                          |                                                    | 0.016              |                                                                                       | <0.001<br><0.001                                                           | <0.001<br><0.001                                                                | <0.001                                                   | <0.001<br><0.001                                                                | <0.001<br><0.001                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L                                                                                                             | 0.001                                                            |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | <0.001                                                                     | <0.001                                                                          | <0.001                                                   | <0.001                                                                          | <0.001                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H (Sum of Common 16 PAHs - Lab Reported)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/L                                                                                                             | 0.001                                                            |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       | <0.001                                                                     | <0.001                                                                          | <0.001                                                   | <0.001                                                                          | <0.001                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | noseb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/L                                                                                                             | 0.1                                                              |                                               |                                                                                  |                                                          |                                                    |                    |                                                                                       |                                                                            |                                                                                 |                                                          |                                                                                 |                                                     |

VB5

Location\_Code VB1 VB2 VB3



|                       |                                        |             |       |                                                  |                                                                      |                                                 |                                                    |                  | Field_ID                        | Q00185-6   | Q00185-5   | Q00185-4   | Q00185-1   | Q00185-2   |
|-----------------------|----------------------------------------|-------------|-------|--------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|------------------|---------------------------------|------------|------------|------------|------------|------------|
|                       |                                        |             |       |                                                  |                                                                      |                                                 |                                                    |                  | Sampled Date                    | 10/07/2017 | 10/07/2017 | 10/07/2017 | 10/07/2017 | 10/07/2017 |
|                       |                                        |             |       |                                                  |                                                                      |                                                 |                                                    |                  | Lab_Report_Number               | 553774     | 553774     | 553774     | 553774     | 553774     |
|                       |                                        |             |       | (DWER) DoH Non-Potable<br>Groundwater Use (NPUG) | ANZECC 2000 Livestock<br>Drinking Water Trigger<br>Value (low risk)^ | DWER AWDG (2011) Drinking Water Aesthetic Value | DWER AWDG (2011)<br>Drinking Water Health<br>Value | DWER Fresh Water | DWER Long-term Irrigation Water |            |            |            |            |            |
| Chemical Group        | Chemical Name                          | output unit | LOR   |                                                  | value (low risk)                                                     | value                                           | value                                              |                  |                                 |            |            |            |            |            |
|                       | 2,4-Dimethylphenol                     | mg/L        | 0.003 |                                                  |                                                                      |                                                 |                                                    |                  |                                 | < 0.003    | < 0.003    | < 0.003    | < 0.003    | < 0.003    |
|                       | 2,4-Dinitrophenol                      | mg/L        | 0.03  |                                                  |                                                                      |                                                 |                                                    | 0.045            |                                 | <0.03      | < 0.03     | < 0.03     | < 0.03     | < 0.03     |
|                       | 2-Methylphenol                         | mg/L        | 0.003 |                                                  |                                                                      |                                                 |                                                    |                  |                                 | < 0.003    | < 0.003    | <0.003     | < 0.003    | <0.003     |
|                       | 2-Nitrophenol                          | mg/L        | 0.01  |                                                  |                                                                      |                                                 |                                                    |                  |                                 | <0.01      | <0.01      | < 0.01     | <0.01      | <0.01      |
| Phenolics             | 3- & 4- Methylphenol                   | mg/L        | 0.006 |                                                  |                                                                      |                                                 |                                                    |                  |                                 | <0.006     | <0.006     | <0.006     | <0.006     | <0.006     |
| rileilolics           | 4,6-Dinitro-2-methylphenol             | mg/L        | 0.03  |                                                  |                                                                      |                                                 |                                                    |                  |                                 | < 0.03     | < 0.03     | < 0.03     | < 0.03     | < 0.03     |
|                       | 4,6-Dinitro-o-cyclohexylphenol         | mg/L        | 0.1   |                                                  |                                                                      |                                                 |                                                    |                  |                                 | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
|                       | 4-Nitrophenol                          | mg/L        | 0.03  |                                                  |                                                                      |                                                 |                                                    |                  |                                 | < 0.03     | < 0.03     | < 0.03     | < 0.03     | < 0.03     |
|                       | Phenol                                 | mg/L        | 0.003 |                                                  |                                                                      |                                                 |                                                    | 0.32             |                                 | < 0.003    | < 0.003    | < 0.003    | < 0.003    | < 0.003    |
|                       | Non-Halogenated Phenols (Sum of total) | mg/L        | 0.1   |                                                  |                                                                      |                                                 |                                                    |                  |                                 | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
|                       | 2,4,5-Trichlorophenol                  | mg/L        | 0.01  |                                                  |                                                                      |                                                 |                                                    |                  |                                 | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
|                       | 2,4,6-Trichlorophenol                  | mg/L        | 0.01  | 0.2                                              |                                                                      | 0.002                                           | 0.02                                               | 0.003            |                                 | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
|                       | 2,4-Dichlorophenol                     | mg/L        | 0.003 | 2                                                |                                                                      | 0.0003                                          | 0.2                                                | 0.12             |                                 | <0.003     | < 0.003    | < 0.003    | < 0.003    | <0.003     |
|                       | 2,6-Dichlorophenol                     | mg/L        | 0.003 |                                                  |                                                                      |                                                 |                                                    |                  |                                 | <0.003     | <0.003     | <0.003     | <0.003     | <0.003     |
| Phenolics-Halogenated | 2-Chlorophenol                         | mg/L        | 0.003 | 3                                                |                                                                      | 0.0001                                          | 0.3                                                | 0.34             |                                 | < 0.003    | < 0.003    | < 0.003    | < 0.003    | < 0.003    |
|                       | 4-Chloro-3-methylphenol                | mg/L        | 0.01  |                                                  |                                                                      |                                                 |                                                    |                  |                                 | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
|                       | Pentachlorophenol                      | mg/L        | 0.01  |                                                  |                                                                      |                                                 | 0.01                                               | 0.0036           |                                 | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
|                       | Tetrachlorophenols (Sum of total)      | mg/L        | 0.03  |                                                  |                                                                      |                                                 |                                                    |                  |                                 | <0.03      | < 0.03     | <0.03      | < 0.03     | < 0.03     |
|                       | Halogenated Phenols (Sum of total)     | mg/L        | 0.01  |                                                  |                                                                      |                                                 |                                                    |                  |                                 | <0.01      | < 0.01     | < 0.01     | <0.01      | <0.01      |

Notes:

\* Cloride Irrigation Trigger Values, Table 4.2.6, ANZECC & ARMCANZ 2000, based on cropping activities.

\* Table 4.3.2, ANZECC & ARMCANZ Guidelines 2000

\*\* No guideline for Chromium, therefore speciated Cr (VI) applied as a conservative guideline.

# No guideline for As, therefore speciated As (V) applied as a conservative guideline.

NT - not sufficiently toxic.

\* Table 8.3.7, ANZECC and ARMCANZ, Chapter 8, October 2000

\* Table 3.3.6 - 3.3.7, Lowland River, ANZECC and ARMCANZ, Volume 1, Chapters 1-7, October 2000

\* Results against adjusted Trigger Values for water hardness are discussed in the report.



|                                     |                                               |             |      |                                                                        |                          | Location_Code                             | VB1        | VB2        | VB3        | VB4        | VB5        |
|-------------------------------------|-----------------------------------------------|-------------|------|------------------------------------------------------------------------|--------------------------|-------------------------------------------|------------|------------|------------|------------|------------|
|                                     |                                               |             |      |                                                                        |                          | Field_ID                                  | Q00185-6   | Q00185-5   | Q00185-4   | Q00185-1   | Q00185-2   |
|                                     |                                               |             |      |                                                                        |                          | Sampled Date                              | 10/07/2017 | 10/07/2017 | 10/07/2017 | 10/07/2017 | 10/07/2017 |
|                                     |                                               |             |      |                                                                        |                          | Lab_Report_Number                         | 553774     | 553774     | 553774     | 553774     | 553774     |
|                                     |                                               |             |      | PFAS - Ecological - Freshwater<br>(99% species protection) WA<br>DWER* | PFAS - Drinking Water WA | PFAS - Non Potable/Recreational Use DOH** |            |            |            |            |            |
| Chemical Group                      | Chemical Name                                 | output unit | LOR  | DWER                                                                   |                          |                                           |            |            |            |            |            |
| Per- and polyfluoroalkyl substances | N-Methyl PFO sulfonamidoethanol (MeFOSE)      | μg/L        | 0.05 |                                                                        |                          |                                           | < 0.05     | < 0.05     | < 0.05     | < 0.05     | < 0.05     |
| (PFAS)                              | Perfluorodecane sulfonic acid (PFDS)          | µg/L        | 0.01 |                                                                        |                          |                                           | < 0.01     | < 0.01     | < 0.01     | < 0.01     | < 0.01     |
|                                     | N-methyl-PFO sulfonamidoacetic acid (MeFOSAA) | µg/L        | 0.05 |                                                                        |                          |                                           | < 0.05     | < 0.05     | < 0.05     | < 0.05     | < 0.05     |
|                                     | Perfluorooctanoic Acid (PFOA)                 | μg/L        | 0.01 | 19                                                                     | 0.56                     | 5.6                                       | < 0.01     | 0.02       | 0.07       | 0.08       | < 0.01     |
|                                     | Perfluorooctane sulfonic acid (PFOS)          | µg/L        | 0.01 |                                                                        | <del></del>              |                                           | 0.11       | < 0.01     | 0.04       | 0.02       | 0.01       |
|                                     | Perfluorohexane sulfonic acid (PFHxS)         | µg/L        | 0.01 |                                                                        |                          |                                           | < 0.01     | 0.04       | 0.11       | 0.15       | 0.01       |
|                                     | Sum of PFHxS and PFOS (calculated)<           | μg/L        | 0.01 | 0.00023                                                                | 0.07                     | 0.7                                       | 0.12       | 0.05       | 0.15       | 0.17       | 0.02       |
|                                     | Sum of PFAS (WA DER 10, calculated)           | µg/L        | 0.01 |                                                                        | <del></del>              |                                           | -          |            | -          | -          |            |
|                                     | Perfluorobutanoic acid (PFBA)                 | μg/L        | 0.05 |                                                                        |                          |                                           | < 0.05     | 0.49       | 0.26       | 0.53       | < 0.05     |
|                                     | Perfluorohexanoic acid (PFHxA)                | μg/L        | 0.01 |                                                                        |                          |                                           | < 0.01     | 1          | 1.7        | 2.6        | 0.17       |
|                                     | Perfluoroheptanoic acid (PFHpA)               | µg/L        | 0.01 |                                                                        |                          |                                           | < 0.01     | 0.2        | 0.48       | 0.65       | 0.03       |
|                                     | Perfluorodecanoic acid (PFDA)                 | μg/L        | 0.01 |                                                                        |                          |                                           | < 0.01     | < 0.01     | < 0.01     | < 0.01     | < 0.01     |
|                                     | Perfluoropentanoic acid (PFPeA)               | μg/L        | 0.01 |                                                                        |                          |                                           | < 0.01     | 2.1        | 1.3        | 2.6        | 0.16       |
|                                     | Perfluorononanoic acid (PFNA)                 | μg/L        | 0.01 |                                                                        |                          |                                           | < 0.01     | < 0.01     | < 0.01     | < 0.01     | < 0.01     |
|                                     | Perfluorotetradecanoic acid (PFTeDA)          | μg/L        | 0.01 |                                                                        |                          |                                           | < 0.01     | < 0.01     | < 0.01     | < 0.01     | < 0.01     |
|                                     | Perfluorotridecanoic acid (PFTrDA)            | μg/L        | 0.01 |                                                                        |                          |                                           | < 0.01     | < 0.01     | < 0.01     | < 0.01     | < 0.01     |
|                                     | Perfluorododecanoic acid (PFDoDA)             | μg/L        | 0.01 |                                                                        |                          |                                           | < 0.01     | < 0.01     | < 0.01     | < 0.01     | < 0.01     |
|                                     | Perfluoroundecanoic acid (PFUnDA)             | μg/L        | 0.01 |                                                                        |                          |                                           | < 0.01     | < 0.01     | < 0.01     | < 0.01     | < 0.01     |
|                                     | Perfluoroheptane sulfonic acid (PFHpS)        | μg/L        | 0.01 |                                                                        |                          |                                           | < 0.01     | < 0.01     | < 0.01     | < 0.01     | < 0.01     |
|                                     | Perfluoropentane sulfonic acid (PFPeS)        | μg/L        | 0.01 |                                                                        |                          |                                           | < 0.01     | 0.02       | 0.05       | 0.07       | < 0.01     |
|                                     | Perfluorobutane sulfonic acid (PFBS)          | μg/L        | 0.01 |                                                                        |                          |                                           | < 0.01     | 0.05       | 0.07       | 0.12       | 0.01       |
|                                     | 4:2 Fluorotelomer sulfonic acid (4:2 FTSA)    | μg/L        | 0.01 |                                                                        |                          |                                           | < 0.01     | < 0.01     | < 0.01     | < 0.01     | < 0.01     |
|                                     | 6:2 Fluorotelomer sulfonic acid (6:2 FTSA)    | μg/L        | 0.05 |                                                                        |                          |                                           | < 0.05     | < 0.05     | < 0.05     | < 0.05     | < 0.05     |
|                                     | 8:2 Fluorotelomer sulfonic acid (8:2 FTSA)    | μg/L        | 0.01 |                                                                        |                          |                                           | < 0.01     | < 0.01     | < 0.01     | < 0.01     | < 0.01     |
|                                     | 10:2 Fluorotelomer sulfonic acid (10:2 FTSA)  | μg/L        | 0.01 |                                                                        |                          |                                           | < 0.01     | < 0.01     | < 0.01     | < 0.01     | < 0.01     |
|                                     | N-Ethyl PFO sulfonamide (EtFOSA)              | μg/L        | 0.05 |                                                                        |                          |                                           | < 0.05     | < 0.05     | < 0.05     | < 0.05     | < 0.05     |
|                                     | N-Ethyl PFO sulfonamidoethanol (EtFOSE)       | μg/L        | 0.05 |                                                                        |                          |                                           | < 0.05     | < 0.05     | < 0.05     | < 0.05     | < 0.05     |
|                                     | N-Methyl PFO sulfonamide (MeFOSA)             | μg/L        | 0.05 |                                                                        |                          |                                           | < 0.05     | < 0.05     | < 0.05     | < 0.05     | < 0.05     |
|                                     | Perfluorooctane sulfonamide (FOSA)            | μg/L        | 0.05 |                                                                        |                          |                                           | < 0.05     | < 0.05     | < 0.05     | < 0.05     | < 0.05     |
|                                     | N-ethyl-PFO sulfonamidoacetic acid (EtFOSAA)  | µg/L        | 0.05 |                                                                        |                          |                                           | < 0.05     | < 0.05     | < 0.05     | < 0.05     | < 0.05     |

Notes:

\*Interim Guideline on the Assessment and Management of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS), Contaminated Sites Guidelines, January 2017

\*Health Based Guidance Values for PFAS Department of Health April 2017

< Manually calculated using LOR value.



| Associates                                   |                                                                                                                                                                                                                                                           |                                         | Lab Daniart Normalian                                                                                                                                                                                                  | 550774                                                                                    | FF0774                                                                                   |                                         | 550774                                                                                    | ED4707040                                                                                   |                                                                                             |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                              |                                                                                                                                                                                                                                                           |                                         | Lab Report Number<br>Field ID                                                                                                                                                                                          | 553774<br>Q00185-2                                                                        | 553774<br>Q00185-3                                                                       | 222                                     | 553774<br>Q00185-6                                                                        | EP1707310<br>Q00186-01                                                                      | 222                                                                                         |
| RPD >30% and results <5 × LOR                |                                                                                                                                                                                                                                                           |                                         | Sampled Date/Time                                                                                                                                                                                                      | 10/07/2017                                                                                | 10/07/2017                                                                               | RPD                                     | 10/07/2017                                                                                | 10/07/2017                                                                                  | RPD                                                                                         |
| RPD >30% and results >5 x LOR Chemical Group | Chemical Name                                                                                                                                                                                                                                             | Units                                   | Sample Type<br>LOR                                                                                                                                                                                                     | Field Primary                                                                             | Field Duplicate                                                                          |                                         | Field Primary                                                                             | Field Triplicate*                                                                           |                                                                                             |
| Sample Quality Parameters                    | Electrical Conductivity @ 25°C                                                                                                                                                                                                                            | μS/cm                                   | 1                                                                                                                                                                                                                      | 680                                                                                       | 680                                                                                      | 0                                       | 400                                                                                       | 412                                                                                         | 3                                                                                           |
|                                              | pH (Lab)                                                                                                                                                                                                                                                  |                                         | · /                                                                                                                                                                                                                    | 5.3                                                                                       | 5.3                                                                                      | 0                                       | 4.2                                                                                       | 4.24                                                                                        | 1 17                                                                                        |
|                                              | Total Dissolved Solids @180°C<br>Sodium                                                                                                                                                                                                                   | mg/L<br>mg/L                            | 0.5                                                                                                                                                                                                                    | 750<br>70                                                                                 | 690<br>69                                                                                | <u>8</u><br>1                           | 570<br>40                                                                                 | 676<br>40                                                                                   | 17<br>0                                                                                     |
|                                              | Potassium                                                                                                                                                                                                                                                 | mg/L                                    | 0.5                                                                                                                                                                                                                    | 37                                                                                        | 37                                                                                       | 0                                       | 18                                                                                        | 26                                                                                          | 36                                                                                          |
|                                              | Calcium                                                                                                                                                                                                                                                   | mg/L                                    | 0.5                                                                                                                                                                                                                    | 8.5                                                                                       | 8.3                                                                                      | 2                                       | 3.9                                                                                       | 5                                                                                           | 25                                                                                          |
|                                              | Magnesium                                                                                                                                                                                                                                                 | mg/L                                    | 0.5                                                                                                                                                                                                                    | 8.1                                                                                       | 7.9                                                                                      | 2                                       | 9.5                                                                                       | 10                                                                                          | 5                                                                                           |
|                                              | Chloride Sulfate (as SO <sub>4</sub> )                                                                                                                                                                                                                    | mg/L                                    | 5                                                                                                                                                                                                                      | 140<br>63                                                                                 | 150<br>62                                                                                | 7 2                                     | 77<br>30                                                                                  | 88<br>36                                                                                    | 13<br>18                                                                                    |
|                                              | Bicarbonate Alkalinity (as CaCO <sub>3</sub> )                                                                                                                                                                                                            | mg/L<br>mg/L                            | 20                                                                                                                                                                                                                     | 29                                                                                        | 24                                                                                       | 19                                      | -                                                                                         | <1                                                                                          | - 18                                                                                        |
|                                              | Carbonate Alkalinity (as CO <sub>3</sub> )                                                                                                                                                                                                                | mg/L                                    | 10                                                                                                                                                                                                                     | <10                                                                                       | <10                                                                                      | <30                                     | <10                                                                                       | <1                                                                                          | <30                                                                                         |
|                                              | Hydroxide Alkalinity (as CaCO <sub>3</sub> )                                                                                                                                                                                                              | mg/L                                    | 10 : 1 (Interlab)                                                                                                                                                                                                      | <10                                                                                       | <10                                                                                      | <30                                     | <10                                                                                       | <1                                                                                          | <30                                                                                         |
|                                              | Total Alkalinity (as CaCO <sub>3</sub> )                                                                                                                                                                                                                  | mg/L                                    | 20 : 1 (Interlab)                                                                                                                                                                                                      | 24                                                                                        | <20                                                                                      | 82                                      | <20                                                                                       | <1                                                                                          | <30                                                                                         |
|                                              | Nitrate (as N)                                                                                                                                                                                                                                            | mg/L                                    | 0.02 : 0.01 (Interlab)                                                                                                                                                                                                 | < 0.02                                                                                    | <0.02                                                                                    | <30                                     | <0.02                                                                                     | 0.05                                                                                        | 133                                                                                         |
|                                              | Nitrite (as N)                                                                                                                                                                                                                                            | mg/L                                    | 0.02 : 0.01 (Interlab)                                                                                                                                                                                                 | <0.02                                                                                     | <0.02                                                                                    | <30                                     | <0.02                                                                                     | <0.01                                                                                       | <30                                                                                         |
|                                              | Nitrogen (Total Oxidised) Ammonia (as N)                                                                                                                                                                                                                  | mg/L<br>mg/L                            | 0.05 : 0.01 (Interlab)<br>0.01                                                                                                                                                                                         | <0.05<br>1.3                                                                              | <0.05<br>1.3                                                                             | <30                                     | <0.05<br>1.2                                                                              | 0.05<br>0.66                                                                                | 67<br>58                                                                                    |
|                                              | Total Kjeldahl Nitrogen (as N)                                                                                                                                                                                                                            | mg/L                                    | 0.2 : 0.1 (Interlab)                                                                                                                                                                                                   | 5                                                                                         | 6.4                                                                                      | 25                                      | 5.5                                                                                       | 6.6                                                                                         | 18                                                                                          |
|                                              | Nitrogen (Total)                                                                                                                                                                                                                                          | mg/L                                    | 0.2 : 0.1 (Interlab)                                                                                                                                                                                                   | 5                                                                                         | 6.4                                                                                      | 25                                      | 5.5                                                                                       | 6.6                                                                                         | 18                                                                                          |
|                                              | Reactive Phosphorus (as P) Total Phosphorus (as P)                                                                                                                                                                                                        | mg/L<br>mg/L                            | 0.05 : 0.01 (Interlab)<br>0.05                                                                                                                                                                                         | 3.1<br>2.7                                                                                | 3<br>2.7                                                                                 | <u>3</u><br>0                           | 11<br>12                                                                                  | 11.7<br>11.9                                                                                | 6<br>0.8                                                                                    |
|                                              | Biological Oxygen Demand                                                                                                                                                                                                                                  | mg/L                                    | 5 : 2 (Interlab)                                                                                                                                                                                                       | <b>2.7</b> <5                                                                             | <b>2.1</b> <5                                                                            | <30                                     | <5                                                                                        | 25                                                                                          | 164                                                                                         |
|                                              | Chemical Oxygen Demand                                                                                                                                                                                                                                    | mg/L                                    | 25 : 10 (Interlab)                                                                                                                                                                                                     | 270                                                                                       | 420                                                                                      | 43                                      | 350                                                                                       | 574                                                                                         | 48                                                                                          |
|                                              | Total Organic Carbon                                                                                                                                                                                                                                      | mg/L                                    | 5 : 1 (Interlab)                                                                                                                                                                                                       | 160                                                                                       | 160                                                                                      | 0                                       | 240                                                                                       | 132                                                                                         | 58                                                                                          |
| Motals                                       | Hardness (as CaCO <sub>3</sub> ) Aluminium (Filtered)                                                                                                                                                                                                     | mg/L                                    | 5<br>0.05 : 0.01 (Interlab)                                                                                                                                                                                            | 54<br>1.7                                                                                 | 53<br>1.6                                                                                | 6                                       | 49<br>0.78                                                                                | 54<br>0.65                                                                                  | 10<br>18                                                                                    |
| Metals                                       | Arsenic (Filtered)                                                                                                                                                                                                                                        | mg/L<br>mg/L                            | 0.05 : 0.01 (Interlab)<br>0.001                                                                                                                                                                                        | <b>1.7</b> <0.001                                                                         | 1.6<br><0.001                                                                            | <b>6</b>                                | 0.78<br><0.001                                                                            | 0.65<br><0.001                                                                              | <b>18</b>                                                                                   |
|                                              | Cadmium (Filtered)                                                                                                                                                                                                                                        | mg/L                                    | 0.0002 : 0.0001 (Interlab)                                                                                                                                                                                             | < 0.0002                                                                                  | < 0.0002                                                                                 | <30                                     | < 0.0002                                                                                  | < 0.0001                                                                                    | <30                                                                                         |
|                                              | Chromium (Filtered)                                                                                                                                                                                                                                       | mg/L                                    | 0.001                                                                                                                                                                                                                  | 0.007                                                                                     | 0.008                                                                                    | 13                                      | 0.004                                                                                     | 0.005                                                                                       | 22                                                                                          |
|                                              | Copper (Filtered) Iron (Filtered)                                                                                                                                                                                                                         | mg/L<br>mg/L                            | 0.001<br>0.05                                                                                                                                                                                                          | <b>&lt;0.001</b> 2.2                                                                      | <b>0.001</b><br>2.1                                                                      | <b>67</b> 5                             | <0.001<br>3.1                                                                             | 0.004<br>2.84                                                                               | <b>155</b><br>9                                                                             |
|                                              | Lead (Filtered)                                                                                                                                                                                                                                           | mg/L                                    | 0.001                                                                                                                                                                                                                  | <0.001                                                                                    | <0.001                                                                                   | <30                                     | <0.001                                                                                    | 0.002                                                                                       | 120                                                                                         |
|                                              | Mercury (Filtered)                                                                                                                                                                                                                                        | mg/L                                    | 0.0001                                                                                                                                                                                                                 | < 0.0001                                                                                  | <0.0001                                                                                  | <30                                     | < 0.0001                                                                                  | <0.0001                                                                                     | <30                                                                                         |
|                                              | Nickel (Filtered)                                                                                                                                                                                                                                         | mg/L                                    | 0.001                                                                                                                                                                                                                  | 0.005                                                                                     | 0.006                                                                                    | 18                                      | 0.004                                                                                     | 0.004                                                                                       | 0                                                                                           |
| Total Recoverable Hydrocarbons               | Zinc (Filtered) TRH C <sub>6</sub> -C <sub>9</sub> Fraction                                                                                                                                                                                               | mg/L<br>mg/L                            | 0.005<br>0.02                                                                                                                                                                                                          | <b>0.016</b> < 0.02                                                                       | 0.017<br><0.02                                                                           | <b>6</b> <30                            | <b>0.009</b>                                                                              | <b>0.032</b> <0.02                                                                          | <b>112</b> <30                                                                              |
| Total Necoverable Hydrocarbons               | TRH C <sub>10</sub> -C <sub>14</sub> Fraction                                                                                                                                                                                                             | mg/L                                    | 0.05                                                                                                                                                                                                                   | < 0.02                                                                                    | <0.05                                                                                    | <30                                     | <0.05                                                                                     | <0.05                                                                                       | <30                                                                                         |
|                                              | TRH C <sub>15</sub> -C <sub>28</sub> Fraction                                                                                                                                                                                                             | mg/L                                    | 0.1                                                                                                                                                                                                                    | <0.1                                                                                      | <0.1                                                                                     | <30                                     | <0.1                                                                                      | <0.1                                                                                        | <30                                                                                         |
|                                              | TRH C <sub>29</sub> -C <sub>36</sub> Fraction                                                                                                                                                                                                             | mg/L                                    | 0.1 : 0.05 (Interlab)                                                                                                                                                                                                  | <0.1                                                                                      | <0.1                                                                                     | <30                                     | <0.1                                                                                      | < 0.05                                                                                      | <30                                                                                         |
|                                              | TRH+C <sub>10</sub> -C <sub>36</sub> (Sum of total) (Lab Reported)                                                                                                                                                                                        | mg/L                                    | 0.1 : 0.05 (Interlab)                                                                                                                                                                                                  | < 0.1                                                                                     | <0.1                                                                                     | <30                                     | < 0.1                                                                                     | < 0.05                                                                                      | <30                                                                                         |
|                                              | TRH C <sub>6</sub> -C <sub>10</sub> Fraction F1                                                                                                                                                                                                           | mg/L                                    | 0.02                                                                                                                                                                                                                   | < 0.02                                                                                    | <0.02                                                                                    | <30                                     | < 0.02                                                                                    | < 0.02                                                                                      | <30                                                                                         |
|                                              | TRH C <sub>6</sub> -C <sub>10</sub> Fraction Less BTEX F1                                                                                                                                                                                                 | mg/L                                    | 0.02                                                                                                                                                                                                                   | <0.02                                                                                     | <0.02                                                                                    | <30                                     | < 0.02                                                                                    | <0.02                                                                                       | <30                                                                                         |
|                                              | TRH >C <sub>10</sub> -C <sub>16</sub> Fraction F2                                                                                                                                                                                                         | mg/L                                    | 0.05 : 0.1 (Interlab)                                                                                                                                                                                                  | < 0.05                                                                                    | <0.05                                                                                    | <30                                     | < 0.05                                                                                    | <0.1                                                                                        | <30                                                                                         |
|                                              | TRH >C <sub>10</sub> -C <sub>16</sub> Fraction Less Naphthalene F2                                                                                                                                                                                        | mg/L                                    | 0.05 : 0.1 (Interlab)                                                                                                                                                                                                  | <0.05                                                                                     | <0.05                                                                                    | <30                                     | < 0.05                                                                                    | <0.1                                                                                        | <30                                                                                         |
|                                              | TRH > C <sub>16</sub> -C <sub>34</sub> Fraction F3                                                                                                                                                                                                        | mg/L                                    | 0.1                                                                                                                                                                                                                    | <0.1                                                                                      | <0.1                                                                                     | <30                                     | <0.1                                                                                      | <0.1                                                                                        | <30                                                                                         |
| MAH                                          | TRH >C <sub>34</sub> -C <sub>40</sub> Fraction F4  Benzene                                                                                                                                                                                                | mg/L<br>mg/L                            | 0.1                                                                                                                                                                                                                    | <0.1<br><0.001                                                                            | <0.1                                                                                     | <30<br><30                              | <0.1<br><0.001                                                                            | <0.1<br><0.001                                                                              | <30<br><30                                                                                  |
| WALL                                         | Toluene                                                                                                                                                                                                                                                   | mg/L                                    | 0.001 : 0.002 (Interlab)                                                                                                                                                                                               | <0.001                                                                                    | <0.001                                                                                   | <30                                     | <0.001                                                                                    | <0.001                                                                                      | <30                                                                                         |
|                                              | Ethylbenzene                                                                                                                                                                                                                                              | mg/L                                    | 0.001 : 0.002 (Interlab)                                                                                                                                                                                               | < 0.001                                                                                   | < 0.001                                                                                  | <30                                     | < 0.001                                                                                   | < 0.002                                                                                     | <30                                                                                         |
|                                              | Xylenes (m & p)                                                                                                                                                                                                                                           | mg/L                                    | 0.002                                                                                                                                                                                                                  | <0.002                                                                                    | <0.002                                                                                   | <30                                     | < 0.002                                                                                   | <0.002                                                                                      | <30                                                                                         |
|                                              | Xylene (o)  Xylenes (Sum of total) (Lab Reported)                                                                                                                                                                                                         | mg/L<br>mg/L                            | 0.001 : 0.002 (Interlab)<br>0.003 : 0.002 (Interlab)                                                                                                                                                                   | <0.001<br><0.003                                                                          | <0.001<br><0.003                                                                         | <30<br><30                              | <0.001<br><0.003                                                                          | <0.002<br><0.002                                                                            | <30<br><30                                                                                  |
| PAH                                          | Acenaphthene                                                                                                                                                                                                                                              | mg/L                                    | 0.001                                                                                                                                                                                                                  | <0.001                                                                                    | <0.001                                                                                   | <30                                     | <0.001                                                                                    | < 0.001                                                                                     | <30                                                                                         |
|                                              | Acenaphthylene                                                                                                                                                                                                                                            | mg/L                                    | 0.001                                                                                                                                                                                                                  | < 0.001                                                                                   | <0.001                                                                                   | <30                                     | < 0.001                                                                                   | <0.001                                                                                      | <30                                                                                         |
|                                              | Anthracene                                                                                                                                                                                                                                                | mg/L                                    | 0.001<br>0.001                                                                                                                                                                                                         | <0.001                                                                                    | <0.001                                                                                   | <30<br><30                              | <0.001                                                                                    | <0.001                                                                                      | <30                                                                                         |
|                                              | Benz(a)anthracene Benzo(a)pyrene                                                                                                                                                                                                                          | mg/L<br>mg/L                            | 0.001 : 0.0005 (Interlab)                                                                                                                                                                                              | <0.001<br><0.001                                                                          | <0.001<br><0.001                                                                         | <30                                     | <0.001<br><0.001                                                                          | <0.001<br><0.0005                                                                           | <30<br><30                                                                                  |
|                                              | Benzo(b)&(j)fluoranthene                                                                                                                                                                                                                                  | mg/L                                    | 0.001                                                                                                                                                                                                                  | <0.001                                                                                    | <0.001                                                                                   | <30                                     | <0.001                                                                                    | <0.001                                                                                      | <30                                                                                         |
|                                              | Benzo(g,h,i)perylene                                                                                                                                                                                                                                      | mg/L                                    | 0.001                                                                                                                                                                                                                  | < 0.001                                                                                   | <0.001                                                                                   | <30                                     | <0.001                                                                                    | <0.001                                                                                      | <30                                                                                         |
|                                              | Benzo(k)fluoranthene<br>Chrysene                                                                                                                                                                                                                          | mg/L<br>mg/L                            | 0.001<br>0.001                                                                                                                                                                                                         | <0.001<br><0.001                                                                          | <0.001<br><0.001                                                                         | <30<br><30                              | <0.001<br><0.001                                                                          | <0.001<br><0.001                                                                            | <30<br><30                                                                                  |
|                                              | Dibenz(a,h)anthracene                                                                                                                                                                                                                                     | mg/L                                    | 0.001                                                                                                                                                                                                                  | <0.001                                                                                    | <0.001                                                                                   | <30                                     | <0.001                                                                                    | <0.001                                                                                      | <30                                                                                         |
|                                              | Fluoranthene                                                                                                                                                                                                                                              | mg/L                                    | 0.001                                                                                                                                                                                                                  | <0.001                                                                                    | <0.001                                                                                   | <30                                     | <0.001                                                                                    | < 0.001                                                                                     | <30                                                                                         |
|                                              | Fluorene<br>Indeno(1,2,3-c,d)pyrene                                                                                                                                                                                                                       | mg/L<br>mg/L                            | 0.001                                                                                                                                                                                                                  | <0.001<br><0.001                                                                          | <0.001<br><0.001                                                                         | <30<br><30                              | <0.001<br><0.001                                                                          | <0.001<br><0.001                                                                            | <30<br><30                                                                                  |
|                                              | Naphthalene                                                                                                                                                                                                                                               | mg/L<br>mg/L                            | 0.001                                                                                                                                                                                                                  | <0.001                                                                                    | <0.01                                                                                    | <30                                     | <0.001                                                                                    | <0.001                                                                                      | <30                                                                                         |
|                                              | Naphthalene                                                                                                                                                                                                                                               | mg/L                                    | 0.001 : 0.005 (Interlab)                                                                                                                                                                                               | < 0.001                                                                                   | < 0.001                                                                                  | <30                                     | < 0.001                                                                                   | < 0.001                                                                                     | <30                                                                                         |
|                                              | Phenanthrene                                                                                                                                                                                                                                              | mg/L                                    | 0.001                                                                                                                                                                                                                  | <0.001                                                                                    | <0.001                                                                                   | <30                                     | <0.001                                                                                    | <0.001                                                                                      | <30                                                                                         |
|                                              | Pyrene PAH (Sum of Common 16 PAHs - Lab Reported)                                                                                                                                                                                                         | mg/L<br>mg/L                            | 0.001<br>0.001 : 0.0005 (Interlab)                                                                                                                                                                                     | <0.001<br><0.001                                                                          | <0.001<br><0.001                                                                         | <30<br><30                              | <0.001<br><0.001                                                                          | <0.001<br><0.0005                                                                           | <30<br><30                                                                                  |
| lerbicides                                   | Dinoseb                                                                                                                                                                                                                                                   | mg/L                                    | 0.1                                                                                                                                                                                                                    | <0.01                                                                                     | <0.1                                                                                     | <30                                     | <0.1                                                                                      | -                                                                                           | -                                                                                           |
| Phenolics                                    | 2,4-Dimethylphenol                                                                                                                                                                                                                                        | mg/L                                    | 0.003 : 0.001 (Interlab)                                                                                                                                                                                               | < 0.003                                                                                   | < 0.003                                                                                  | <30                                     | < 0.003                                                                                   | <0.001                                                                                      | <30                                                                                         |
| HOHOHOS                                      | 2,4-Dinitrophenol                                                                                                                                                                                                                                         | mg/L                                    | 0.03                                                                                                                                                                                                                   | < 0.03                                                                                    | < 0.03                                                                                   | <30                                     | <0.03                                                                                     | -                                                                                           | _                                                                                           |
|                                              |                                                                                                                                                                                                                                                           | mg/L                                    | 0.003 : 0.001 (Interlab)<br>0.01 : 0.001 (Interlab)                                                                                                                                                                    | <0.003<br><0.01                                                                           | <0.003<br><0.01                                                                          | <30<br><30                              | <0.003                                                                                    | <0.001<br><0.001                                                                            | <30<br><30                                                                                  |
|                                              | 2-Methylphenol 2-Nitrophenol                                                                                                                                                                                                                              |                                         | LOTO : OTOO ! (ILIGHAD)                                                                                                                                                                                                |                                                                                           |                                                                                          |                                         |                                                                                           | <0.001                                                                                      | <30                                                                                         |
|                                              | 2-Nitrophenol<br>3- & 4- Methylphenol                                                                                                                                                                                                                     | mg/L<br>mg/L                            | 0.006 : 0.002 (Interlab)                                                                                                                                                                                               | < 0.006                                                                                   | < 0.006                                                                                  | <30                                     | < 0.006                                                                                   | <0.002                                                                                      |                                                                                             |
|                                              | 2-Nitrophenol 3- & 4- Methylphenol 4,6-Dinitro-2-methylphenol                                                                                                                                                                                             | mg/L<br>mg/L                            | 0.03                                                                                                                                                                                                                   | < 0.03                                                                                    | <0.03                                                                                    | <30                                     | < 0.03                                                                                    | -                                                                                           | -                                                                                           |
|                                              | 2-Nitrophenol 3- & 4- Methylphenol 4,6-Dinitro-2-methylphenol 4,6-Dinitro-o-cyclohexylphenol                                                                                                                                                              | mg/L<br>mg/L<br>mg/L                    | 0.03<br>0.1                                                                                                                                                                                                            | <0.03<br><0.1                                                                             | <0.03<br><0.1                                                                            | <30<br><30                              | <0.03<br><0.1                                                                             |                                                                                             | -                                                                                           |
|                                              | 2-Nitrophenol 3- & 4- Methylphenol 4,6-Dinitro-2-methylphenol 4,6-Dinitro-o-cyclohexylphenol 4-Nitrophenol                                                                                                                                                | mg/L<br>mg/L<br>mg/L<br>mg/L            | 0.03<br>0.1<br>0.03                                                                                                                                                                                                    | <0.03<br><0.1<br><0.03                                                                    | <0.03<br><0.1<br><0.03                                                                   | <30<br><30<br><30                       | <0.03<br><0.1<br><0.03                                                                    | -<br>-<br>-                                                                                 | -<br>-<br>-                                                                                 |
|                                              | 2-Nitrophenol 3- & 4- Methylphenol 4,6-Dinitro-2-methylphenol 4,6-Dinitro-o-cyclohexylphenol 4-Nitrophenol Phenol                                                                                                                                         | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L    | 0.03<br>0.1<br>0.03<br>0.003 : 0.001 (Interlab)                                                                                                                                                                        | <0.03<br><0.1<br><0.03<br><0.003                                                          | <0.03<br><0.1<br><0.03<br><0.003                                                         | <30<br><30<br><30<br><30                | <0.03<br><0.1                                                                             |                                                                                             | -                                                                                           |
|                                              | 2-Nitrophenol 3- & 4- Methylphenol 4,6-Dinitro-2-methylphenol 4,6-Dinitro-o-cyclohexylphenol 4-Nitrophenol Phenol Non-Halogenated Phenols (Sum of total) 2,4,5-Trichlorophenol                                                                            | mg/L<br>mg/L<br>mg/L<br>mg/L            | 0.03<br>0.1<br>0.03<br>0.003 : 0.001 (Interlab)<br>0.1<br>0.01 : 0.001 (Interlab)                                                                                                                                      | <0.03<br><0.1<br><0.03                                                                    | <0.03<br><0.1<br><0.03                                                                   | <30<br><30<br><30                       | <0.03<br><0.1<br><0.03<br><0.003                                                          | -<br>-<br>-<br><0.001                                                                       | -<br>-<br>-<br><30                                                                          |
|                                              | 2-Nitrophenol 3- & 4- Methylphenol 4,6-Dinitro-2-methylphenol 4,6-Dinitro-o-cyclohexylphenol 4-Nitrophenol Phenol Non-Halogenated Phenols (Sum of total) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol                                                      | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L | 0.03<br>0.1<br>0.03<br>0.003 : 0.001 (Interlab)<br>0.1<br>0.01 : 0.001 (Interlab)<br>0.01 : 0.001 (Interlab)                                                                                                           | <0.03<br><0.1<br><0.03<br><0.003<br><0.1<br><0.01                                         | <0.03<br><0.1<br><0.03<br><0.003<br><0.01<br><0.01<br><0.01                              | <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 | <0.03<br><0.1<br><0.03<br><0.003<br><0.001<br><0.01                                       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br><30<br>-<br><30<br><30                                                       |
|                                              | 2-Nitrophenol 3- & 4- Methylphenol 4,6-Dinitro-2-methylphenol 4,6-Dinitro-o-cyclohexylphenol 4-Nitrophenol Phenol Non-Halogenated Phenols (Sum of total) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol                                   | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L | 0.03<br>0.1<br>0.03<br>0.003 : 0.001 (Interlab)<br>0.1<br>0.01 : 0.001 (Interlab)<br>0.01 : 0.001 (Interlab)<br>0.003 : 0.001 (Interlab)                                                                               | <0.03<br><0.1<br><0.03<br><0.003<br><0.1<br><0.01<br><0.01<br><0.001                      | <0.03<br><0.1<br><0.03<br><0.003<br><0.01<br><0.01<br><0.01<br><0.003                    | <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 | <0.03<br><0.1<br><0.03<br><0.003<br><0.01<br><0.01<br><0.01<br><0.001                     | -<br>-<br>-<br><0.001<br>-<br>-<br><0.001<br><0.001<br><0.001                               | -<br>-<br>-<br><30<br>-<br><30<br><30<br><30<br><30                                         |
|                                              | 2-Nitrophenol 3- & 4- Methylphenol 4,6-Dinitro-2-methylphenol 4,6-Dinitro-o-cyclohexylphenol 4-Nitrophenol Phenol Non-Halogenated Phenols (Sum of total) 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,6-Dichlorophenol 2,6-Dichlorophenol                   | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L | 0.03<br>0.1<br>0.03<br>0.003 : 0.001 (Interlab)<br>0.1<br>0.01 : 0.001 (Interlab)<br>0.01 : 0.001 (Interlab)                                                                                                           | <0.03<br><0.1<br><0.03<br><0.003<br><0.1<br><0.01                                         | <0.03<br><0.1<br><0.03<br><0.003<br><0.01<br><0.01<br><0.01<br><0.003<br><0.003          | <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 | <0.03<br><0.1<br><0.03<br><0.003<br><0.001<br><0.01                                       | -<br>-<br><0.001<br>-<br><0.001<br><0.001<br><0.001<br><0.001                               | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
|                                              | 2-Nitrophenol 3- & 4- Methylphenol 4,6-Dinitro-2-methylphenol 4,6-Dinitro-o-cyclohexylphenol 4-Nitrophenol Phenol Non-Halogenated Phenols (Sum of total) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol                                   | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L | 0.03<br>0.1<br>0.03<br>0.003: 0.001 (Interlab)<br>0.1<br>0.01: 0.001 (Interlab)<br>0.003: 0.001 (Interlab)<br>0.003: 0.001 (Interlab)<br>0.003: 0.001 (Interlab)<br>0.003: 0.001 (Interlab)<br>0.001: 0.001 (Interlab) | <0.03<br><0.1<br><0.03<br><0.003<br><0.1<br><0.01<br><0.01<br><0.001<br><0.003            | <0.03<br><0.1<br><0.03<br><0.003<br><0.01<br><0.01<br><0.01<br><0.003                    | <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 | <0.03<br><0.1<br><0.03<br><0.003<br><0.1<br><0.01<br><0.01<br><0.003<br><0.003            | -<br>-<br>-<br><0.001<br>-<br>-<br><0.001<br><0.001<br><0.001                               | -<br>-<br>-<br><30<br>-<br><30<br><30<br><30<br><30                                         |
| Phenolics-Halogenated                        | 2-Nitrophenol 3- & 4- Methylphenol 4,6-Dinitro-2-methylphenol 4,6-Dinitro-o-cyclohexylphenol 4-Nitrophenol Phenol Non-Halogenated Phenols (Sum of total) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,6-Dichlorophenol 2-Chlorophenol | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L | 0.03<br>0.1<br>0.03<br>0.003 : 0.001 (Interlab)<br>0.1<br>0.01 : 0.001 (Interlab)<br>0.01 : 0.001 (Interlab)<br>0.003 : 0.001 (Interlab)<br>0.003 : 0.001 (Interlab)<br>0.003 : 0.001 (Interlab)                       | <0.03<br><0.1<br><0.03<br><0.003<br><0.1<br><0.01<br><0.001<br><0.003<br><0.003<br><0.003 | <0.03<br><0.1<br><0.03<br><0.003<br><0.1<br><0.01<br><0.01<br><0.003<br><0.003<br><0.003 | <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 | <0.03<br><0.1<br><0.03<br><0.003<br><0.01<br><0.01<br><0.01<br><0.003<br><0.003<br><0.003 | -                                                                                           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |

# Table 3: QA/QC Relative Percentage Difference Results



| Associates                    |                                               |             | Lab Report Number      | 553774        | 553774          |     | 553774        | EP1707310         |     |  |
|-------------------------------|-----------------------------------------------|-------------|------------------------|---------------|-----------------|-----|---------------|-------------------|-----|--|
|                               |                                               |             | Field ID               | Q00185-2      | Q00185-3        | RPD | Q00185-6      | Q00186-01         | RPD |  |
| RPD >30% and results <5 x LOR |                                               |             | Sampled Date/Time      | 10/07/2017    | 10/07/2017      | KPD | 10/07/2017    | 10/07/2017        | KPD |  |
| RPD >30% and results >5 x LOR |                                               | Sample Type |                        | Field Primary | Field Duplicate |     | Field Primary | Field Triplicate* |     |  |
| er- and polyfluoroalkyl       | N-Methyl PFO sulfonamidoethanol (MeFOSE)      | μg/L        | 0.05                   | < 0.05        | < 0.05          | <30 | < 0.05        | -                 | -   |  |
| substances (PFAS)             | Perfluorodecane sulfonic acid (PFDS)          | μg/L        | 0.01                   | < 0.01        | < 0.01          | <30 | < 0.01        | -                 | -   |  |
|                               | N-methyl-PFO sulfonamidoacetic acid (MeFOSAA) | μg/L        | 0.05                   | < 0.05        | < 0.05          | <30 | < 0.05        | -                 | _   |  |
|                               | Perfluorooctanoic Acid (PFOA)                 | μg/L        | 0.01                   | < 0.01        | < 0.01          | <30 | < 0.01        | < 0.01            | <30 |  |
|                               | Perfluorooctane sulfonic acid (PFOS)          | μg/L        | 0.01                   | 0.01          | <0.01           | 67  | 0.11          | <0.01             | 183 |  |
|                               | Perfluorohexane sulfonic acid (PFHxS)         | μg/L        | 0.01 : 0.02 (Interlab) | 0.01          | 0.01            | 0   | < 0.01        | < 0.02            | <30 |  |
|                               | Perfluorobutanoic acid (PFBA)                 |             | 0.05 : 0.1 (Interlab)  | < 0.05        | < 0.05          | <30 | < 0.05        | <0.1              | <30 |  |
|                               | Perfluorohexanoic acid (PFHxA)                | μg/L        | 0.01 : 0.02 (Interlab) | 0.17          | 0.17            | 0   | < 0.01        | < 0.02            | <30 |  |
|                               | Perfluoroheptanoic acid (PFHpA)               | μg/L        | 0.01 : 0.02 (Interlab) | 0.03          | 0.03            | 0   | < 0.01        | < 0.02            | <30 |  |
|                               | Perfluorodecanoic acid (PFDA)                 | μg/L        | 0.01                   | < 0.01        | < 0.01          | <30 | < 0.01        | -                 | -   |  |
|                               | Perfluoropentanoic acid (PFPeA)               | μg/L        | 0.01 : 0.02 (Interlab) | 0.16          | 0.16            | 0   | < 0.01        | < 0.02            | <30 |  |
|                               | Perfluorononanoic acid (PFNA)                 | μg/L        | 0.01                   | < 0.01        | < 0.01          | <30 | < 0.01        | -                 | -   |  |
|                               | Perfluorotetradecanoic acid (PFTeDA)          | μg/L        | 0.01                   | < 0.01        | < 0.01          | <30 | < 0.01        | -                 | -   |  |
|                               | Perfluorotridecanoic acid (PFTrDA)            | μg/L        | 0.01                   | < 0.01        | < 0.01          | <30 | < 0.01        | -                 | -   |  |
|                               | Perfluorododecanoic acid (PFDoDA)             | μg/L        | 0.01                   | < 0.01        | < 0.01          | <30 | < 0.01        | -                 | _   |  |
|                               | Perfluoroundecanoic acid (PFUnDA)             | μg/L        | 0.01                   | < 0.01        | < 0.01          | <30 | < 0.01        | -                 | _   |  |
|                               | Perfluoroheptane sulfonic acid (PFHpS)        | μg/L        | 0.01                   | < 0.01        | < 0.01          | <30 | < 0.01        | -                 | _   |  |
|                               | Perfluoropentane sulfonic acid (PFPeS)        | μg/L        | 0.01                   | < 0.01        | < 0.01          | <30 | < 0.01        | -                 | -   |  |
|                               | Perfluorobutane sulfonic acid (PFBS)          | μg/L        | 0.01 : 0.02 (Interlab) | 0.01          | <0.01           | 67  | < 0.01        | < 0.02            | <30 |  |
|                               | 4:2 Fluorotelomer sulfonic acid (4:2 FTSA)    | μg/L        | 0.01 : 0.05 (Interlab) | < 0.01        | < 0.01          | <30 | < 0.01        | < 0.05            | <30 |  |
|                               | 6:2 Fluorotelomer sulfonic acid (6:2 FTSA)    | μg/L        | 0.05                   | < 0.05        | < 0.05          | <30 | < 0.05        | < 0.05            | <30 |  |
|                               | 8:2 Fluorotelomer sulfonic acid (8:2 FTSA)    | μg/L        | 0.01 : 0.05 (Interlab) | < 0.01        | < 0.01          | <30 | < 0.01        | < 0.05            | <30 |  |
|                               | 10:2 Fluorotelomer sulfonic acid (10:2 FTSA)  | μg/L        | 0.01 : 0.05 (Interlab) | < 0.01        | < 0.01          | <30 | < 0.01        | < 0.05            | <30 |  |
|                               | N-Ethyl PFO sulfonamide (EtFOSA)              | μg/L        | 0.05                   | < 0.05        | < 0.05          | <30 | < 0.05        | -                 | -   |  |
|                               | N-Ethyl PFO sulfonamidoethanol (EtFOSE)       | μg/L        | 0.05                   | < 0.05        | < 0.05          | <30 | < 0.05        | -                 | -   |  |
|                               | N-Methyl PFO sulfonamide (MeFOSA)             | μg/L        | 0.05                   | < 0.05        | < 0.05          | <30 | < 0.05        | -                 | -   |  |
|                               | Perfluorooctane sulfonamide (FOSA)            | μg/L        | 0.05                   | < 0.05        | < 0.05          | <30 | < 0.05        | -                 | -   |  |
|                               | N-ethyl-PFO sulfonamidoacetic acid (EtFOSAA)  |             | 0.05                   | < 0.05        | < 0.05          | <30 | < 0.05        | _                 | _   |  |

Notes:

<sup>\*</sup>Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laborator



| Associates                                 |                                                                                |              | Lab Report Number Field ID | 552310<br>Q13077-08     | EP1707310<br>Q00186-02 | 553774<br>Q00185-7 |
|--------------------------------------------|--------------------------------------------------------------------------------|--------------|----------------------------|-------------------------|------------------------|--------------------|
|                                            |                                                                                |              | Sampled Date               | 28/06/2017              | 10/07/2017             | 10/07/2017         |
| Chemical Group                             | Chemical Name                                                                  | Units        | Sample Type LOR            | Rinsate                 | Trip_B                 | Trip_B             |
| etals                                      | Aluminium (Filtered)                                                           | mg/L         | 0.01                       | _                       | -                      | _                  |
|                                            | Arsenic (Filtered)                                                             | mg/L         | 0.001                      | < 0.001                 | -                      | ı                  |
|                                            | Cadmium (Filtered)                                                             | mg/L         | 0.0001                     | <0.0002                 | -                      | -                  |
|                                            | Chromium (Filtered)                                                            | mg/L         | 0.001                      | <0.001                  | _                      | -                  |
|                                            | Copper (Filtered) Iron (Filtered)                                              | mg/L         | 0.001<br>0.05              | <0.001                  | -                      | _                  |
|                                            | Lead (Filtered)                                                                | mg/L<br>mg/L | 0.001                      | <0.001                  |                        |                    |
|                                            | Mercury (Filtered)                                                             | mg/L         | 0.0001                     | <0.0001                 | _                      | _                  |
|                                            | Nickel (Filtered)                                                              | mg/L         | 0.001                      | < 0.001                 | -                      | -                  |
|                                            | Zinc (Filtered)                                                                | mg/L         | 0.005                      | < 0.005                 | -                      | -                  |
| otal Recoverable Hydrocarbons              | TRH C <sub>6</sub> -C <sub>9</sub> Fraction                                    | mg/L         | 0.02                       | -                       | < 0.02                 | < 0.02             |
|                                            | TRH C <sub>10</sub> -C <sub>14</sub> Fraction                                  | mg/L         | 0.05                       | -                       | -                      | -                  |
|                                            | TRH C <sub>15</sub> -C <sub>28</sub> Fraction                                  | mg/L         | 0.1                        | -                       | -                      | -                  |
|                                            | TRH C <sub>29</sub> -C <sub>36</sub> Fraction                                  | mg/L         | 0.05                       | -                       | -                      | -                  |
|                                            | TRH+C <sub>10</sub> -C <sub>36</sub> (Sum of total) (Lab Reported)             | mg/L         | 0.05                       | -                       | -                      | -                  |
|                                            | TRH+C <sub>10</sub> -C <sub>40</sub> (Sum of total) (Lab Reported)             | mg/L         | 0.1                        | -                       | -                      | _                  |
|                                            | TRH C <sub>6</sub> -C <sub>10</sub> Fraction F1                                | mg/L         | 0.02                       | -                       | < 0.02                 | < 0.02             |
|                                            | TRH C <sub>6</sub> -C <sub>10</sub> Fraction Less BTEX F1                      | mg/L         | 0.02                       | _                       | <0.02                  | < 0.02             |
|                                            | TRH >C <sub>10</sub> -C <sub>16</sub> Fraction F2                              | mg/L         | 0.05                       | -                       | -                      | _                  |
|                                            | TRH >C <sub>10</sub> -C <sub>16</sub> Fraction Less Naphthalene F2             | mg/L         | 0.05                       | -                       | -                      | -                  |
|                                            | TRH >C <sub>16</sub> -C <sub>34</sub> Fraction F3                              | mg/L         | 0.1                        | -                       | -                      | _                  |
|                                            | TRH >C <sub>34</sub> -C <sub>40</sub> Fraction F4                              | mg/L         | 0.1                        | -                       | -                      | -                  |
| AH                                         | Benzene                                                                        | mg/L         | 0.001                      | _                       | <0.001                 | < 0.001            |
|                                            | Toluene<br>Ethylbenzene                                                        | mg/L         | 0.001<br>0.001             | -                       | <0.002<br><0.002       | <0.001<br><0.001   |
|                                            | Xylenes (m & p)                                                                | mg/L<br>mg/L | 0.001                      |                         | <0.002                 | <0.001             |
|                                            | Xylene (o)                                                                     | mg/L         | 0.001                      | _                       | <0.002                 | < 0.002            |
|                                            | Xylenes (Sum of total) (Lab Reported)                                          | mg/L         | 0.002                      | -                       | < 0.002                | < 0.003            |
|                                            | Total BTEX                                                                     | mg/L         | 0.001                      | -                       | < 0.001                | _                  |
| АН                                         | Acenaphthene                                                                   | mg/L         | 0.001                      | ı                       | -                      | -                  |
|                                            | Acenaphthylene                                                                 | mg/L         | 0.001                      | -                       | -                      | -                  |
|                                            | Anthracene Benz(a)anthracene                                                   | mg/L         | 0.001<br>0.001             |                         | -                      | -                  |
|                                            | Benzo(a)pyrene                                                                 | mg/L<br>mg/L | 0.0005                     |                         | _                      |                    |
|                                            | Benzo(a)pyrene TEQ (lower bound)*                                              | mg/L         | 0.0005                     | _                       | _                      | _                  |
|                                            | Benzo(b)&(j)fluoranthene                                                       | mg/L         | 0.001                      | 1                       | _                      | _                  |
|                                            | Benzo(g,h,i)perylene                                                           | mg/L         | 0.001                      | -                       | -                      | _                  |
|                                            | Benzo(k)fluoranthene                                                           | mg/L         | 0.001                      | _                       | -                      | _                  |
|                                            | Chrysene                                                                       | mg/L         | 0.001                      | -                       | -                      | -                  |
|                                            | Dibenz(a,h)anthracene Fluoranthene                                             | mg/L<br>mg/L | 0.001<br>0.001             |                         |                        |                    |
|                                            | Fluorene                                                                       | mg/L         | 0.001                      |                         | _                      | _                  |
|                                            | Indeno(1,2,3-c,d)pyrene                                                        | mg/L         | 0.001                      | _                       | -                      | _                  |
|                                            | Naphthalene                                                                    | mg/L         | 0.001                      | -                       | < 0.005                | < 0.01             |
|                                            | Phenanthrene                                                                   | mg/L         | 0.001                      | -                       | -                      | -                  |
|                                            | Pyrene                                                                         | mg/L         | 0.001                      | -                       | -                      | _                  |
|                                            | PAH (Sum of Common 16 PAHs - Lab Reported)                                     | mg/L         | 0.0005                     | -                       | -                      | _                  |
| er- and polyfluoroalkyl substances<br>FAS) | N-Methyl PFO sulfonamidoethanol (MeFOSE)  Perfluorodecane sulfonic acid (PFDS) | μg/L         | 0.05<br>0.01               | < 0.05                  |                        |                    |
| ras)                                       | N-methyl-PFO sulfonamidoacetic acid (MeFOSAA)                                  | μg/L<br>μg/L | 0.05                       | <0.01<br><0.05          | _                      |                    |
|                                            | Perfluorooctanoic Acid (PFOA)                                                  | μg/L         | 0.01                       | <0.01                   | _                      | _                  |
|                                            | Perfluorooctane sulfonic acid (PFOS)                                           | μg/L         | 0.01                       | <0.01                   | _                      | _                  |
|                                            | Perfluorohexane sulfonic acid (PFHxS)                                          | μg/L         | 0.01                       | < 0.01                  | -                      | -                  |
|                                            | Sum of PFHxS and PFOS (calculated)                                             | μg/L         | 0.01                       | -                       | -                      | -                  |
|                                            | Sum of PFAS (WA DER 10, calculated)                                            | μg/L         | 0.01                       | -                       | _                      | -                  |
|                                            | Perfluorobutanoic acid (PFBA) Perfluorohexanoic acid (PFHxA)                   | μg/L         | 0.05<br>0.01               | <0.05<br><0.01          | _                      | _                  |
|                                            | Perfluoroheptanoic acid (PFHpA)                                                | μg/L<br>μg/L | 0.01                       | <0.01                   |                        |                    |
|                                            | Perfluorodecanoic acid (PFDA)                                                  | μg/L         | 0.01                       | <0.01                   | _                      | _                  |
|                                            | Perfluoropentanoic acid (PFPeA)                                                | μg/L         | 0.01                       | <0.01                   | -                      | -                  |
|                                            | Perfluorononanoic acid (PFNA)                                                  | μg/L         | 0.01                       | < 0.01                  | -                      | -                  |
|                                            | Perfluorotetradecanoic acid (PFTeDA)                                           | μg/L         | 0.01                       | <0.01                   | -                      | -                  |
|                                            | Perfluorotridecanoic acid (PFTrDA)                                             | μg/L         | 0.01                       | <0.01                   | -                      | -                  |
|                                            | Perfluorododecanoic acid (PFDoDA)                                              | μg/L         | 0.01                       | <0.01                   | -                      | _                  |
|                                            | Perfluoroundecanoic acid (PFUnDA)  Perfluoroheptane sulfonic acid (PFHpS)      | μg/L<br>μg/L | 0.01                       | <0.01<br><0.01          | _                      |                    |
|                                            | Perfluoropentane sulfonic acid (PFPeS)                                         | μg/L<br>μg/L | 0.01                       | <0.01                   | _                      |                    |
|                                            | Perfluorobutane sulfonic acid (PFBS)                                           | μg/L         | 0.01                       | <0.01                   | _                      | -                  |
|                                            | 4:2 Fluorotelomer sulfonic acid (4:2 FTSA)                                     | μg/L         | 0.01                       | <0.01                   | -                      |                    |
|                                            | 6:2 Fluorotelomer sulfonic acid (6:2 FTSA)                                     | μg/L         | 0.05                       | < 0.05                  | _                      | -                  |
|                                            | 8:2 Fluorotelomer sulfonic acid (8:2 FTSA)                                     | μg/L         | 0.01                       | <0.01                   | -                      | -                  |
|                                            | 10:2 Fluorotelomer sulfonic acid (10:2 FTSA)                                   | μg/L         | 0.01                       | <0.01                   | -                      | _                  |
|                                            | N-Ethyl PFO sulfonamide (EtFOSA)                                               | μg/L         | 0.05                       | < 0.05                  | -                      | _                  |
|                                            |                                                                                |              |                            | 2                       |                        |                    |
|                                            | N-Ethyl PFO sulfonamidoethanol (EtFOSE)                                        | μg/L         | 0.05                       | <0.05                   | -                      | _                  |
|                                            |                                                                                |              |                            | <0.05<br><0.05<br><0.05 | -<br>-<br>-            | -<br>-             |



# **APPENDIX A**

**Borehole Logs** 





# METHOD OF SOIL DESCRIPTION **USED ON BOREHOLE AND TEST PIT REPORTS**



FILL



GRAVEL (GP or GW)



SAND (SP or SW)



SILT (ML or MH)



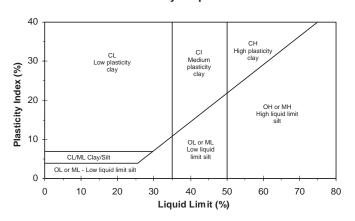
CLAY (CL, CI or CH)



**COBBLES or BOULDERS** 

ORGANIC SOILS (OL or OH or Pt)

Combinations of these basic symbols may be used to indicate mixed materials such as sandy clay.


#### **CLASSIFICATION AND INFERRED STRATIGRAPHY**

Soil and Rock is classified and described in Reports of Boreholes and Test Pits using the preferred method given in AS1726 - 1993, (Amdt1 - 1994 and Amdt2 - 1994), Appendix A. The material properties are assessed in the field by visual/tactile methods.

#### Particle Size

| Major Divi | sion | Sub Division      | Particle Size   |  |  |  |  |  |
|------------|------|-------------------|-----------------|--|--|--|--|--|
| В          | OULE | ERS               | > 200 mm        |  |  |  |  |  |
| (          | COBB | 63 to 200 mm      |                 |  |  |  |  |  |
| GRAVEL     |      | Coarse            | 20 to 63 mm     |  |  |  |  |  |
|            |      | Medium            | 6.0 to 20 mm    |  |  |  |  |  |
|            |      | Fine              | 2.0 to 6.0 mm   |  |  |  |  |  |
|            |      | Coarse            | 0.6 to 2.0 mm   |  |  |  |  |  |
| SAND       |      | Medium            | 0.2 to 0.6 mm   |  |  |  |  |  |
|            |      | Fine              | 0.075 to 0.2 mm |  |  |  |  |  |
|            | SIL  | 0.002 to 0.075 mm |                 |  |  |  |  |  |
|            | CLA  | < 0.002 mm        |                 |  |  |  |  |  |
|            |      |                   |                 |  |  |  |  |  |

#### **Plasticity Properties**



#### **MOISTURE CONDITION**

AS1726 - 1993

AS1726 - 1993

| Symbol | Term  | Description                                                                                   |
|--------|-------|-----------------------------------------------------------------------------------------------|
| D      | Dry   | Sands and gravels are free flowing. Clays & Silts may be brittle or friable and powdery.      |
| M      | Moist | Soils are darker than in the dry condition & may feel cool. Sands and gravels tend to cohere. |
| W      | Wet   | Soils exude free water. Sands and gravels tend to cohere.                                     |
|        |       |                                                                                               |

| CONSISTENCY AND DENSITY |            |                             |  |  |  |  |  |  |
|-------------------------|------------|-----------------------------|--|--|--|--|--|--|
| Symbol                  | Term       | Undrained Shear<br>Strength |  |  |  |  |  |  |
| VS                      | Very Soft  | 0 to 12 kPa                 |  |  |  |  |  |  |
| S                       | Soft       | 12 to 25 kPa                |  |  |  |  |  |  |
| F                       | Firm       | 25 to 50 kPa                |  |  |  |  |  |  |
| St                      | Stiff      | 50 to 100 kPa               |  |  |  |  |  |  |
| VSt                     | Very Stiff | 100 to 200 kPa              |  |  |  |  |  |  |
| Н                       | Hard       | Above 200 kPa               |  |  |  |  |  |  |

| Symbol | Term       | Density Index % | SPT "N" # |
|--------|------------|-----------------|-----------|
| VL     | Very Loose | Less than 15    | 0 to 4    |
| L      | Loose      | 15 to 35        | 4 to 10   |

| VL | Very Loose   | Less than 15 | 0 to 4   |  |  |
|----|--------------|--------------|----------|--|--|
| L  | Loose        | 15 to 35     | 4 to 10  |  |  |
| MD | Medium Dense | 35 to 65     | 10 to 30 |  |  |
| D  | Dense        | 65 to 85     | 30 to 50 |  |  |
| VD | Very Dense   | Above 85     | Above 50 |  |  |
|    |              |              |          |  |  |

In the absence of test results, consistency and density may be assessed from correlations with the observed behaviour of the material.

# SPT correlations are not stated in AS1726 - 1993, and may be subject to corrections for overburden pressure and equipment type.



# **EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT REPORTS**

| DRILLING/E | DRILLING/EXCAVATION METHOD |     |                          |      |                             |  |  |  |  |  |  |
|------------|----------------------------|-----|--------------------------|------|-----------------------------|--|--|--|--|--|--|
| AS*        | Auger Screwing             | RD  | Rotary blade or drag bit | NQ   | Diamond Core - 47 mm        |  |  |  |  |  |  |
| AD*        | Auger Drilling             | RT  | Rotary Tricone bit       | NMLC | Diamond Core - 52 mm        |  |  |  |  |  |  |
| *V         | V-Bit                      | RAB | Rotary Air Blast         | HQ   | Diamond Core - 63 mm        |  |  |  |  |  |  |
| *T         | TC-Bit, e.g. ADT           | RC  | Reverse Circulation      | HMLC | Diamond Core – 63mm         |  |  |  |  |  |  |
| HA         | Hand Auger                 | PT  | Push Tube                | BH   | Tractor Mounted Backhoe     |  |  |  |  |  |  |
| ADH        | Hollow Auger               | CT  | Cable Tool Rig           | EX   | Tracked Hydraulic Excavator |  |  |  |  |  |  |
| DTC        | Diatube Coring             | JET | Jetting                  | EE   | Existing Excavation         |  |  |  |  |  |  |
| WB         | Washbore or Bailer         | NDD | Non-destructive digging  | HAND | Excavated by Hand Methods   |  |  |  |  |  |  |

#### PENETRATION/EXCAVATION RESISTANCE

- Low resistance. Rapid penetration possible with little effort from the equipment used. L
- M Medium resistance. Excavation/possible at an acceptable rate with moderate effort from the equipment used.
- н High resistance to penetration/excavation. Further penetration is possible at a slow rate and requires significant effort from the equipment.
- R Refusal or Practical Refusal. No further progress possible without the risk of damage or unacceptable wear to the digging implement or machine.

These assessments are subjective and are dependent on many factors including the equipment power, weight, condition of excavation or drilling tools, and the experience of the operator.

| V | VΑ | T | Ε | R |
|---|----|---|---|---|
|   |    |   |   |   |

 $\nabla$ Water level at date shown Partial water loss Water inflow Complete water loss

**GROUNDWATER NOT** The observation of groundwater, whether present or not, was not possible due to drilling water,

**OBSERVED** surface seepage or cave in of the borehole/test pit.

**GROUNDWATER NOT** The borehole/test pit was dry soon after excavation. However, groundwater could be present in **ENCOUNTERED** less permeable strata. Inflow may have been observed had the borehole/test pit been left open

for a longer period.

#### **SAMPLING AND TESTING**

SPT Standard Penetration Test to AS1289.6.3.1-2004

4,7,11 = Blows per 150mm. N = Blows per 300mm penetration following 150mm seating 4,7,11 N=18 Where practical refusal occurs, the blows and penetration for that interval are reported 30/80mm

RW Penetration occurred under the rod weight only

HW Penetration occurred under the hammer and rod weight only

Hammer double bouncing on anvil HB

DS Disturbed sample Bulk disturbed sample **BDS** 

Gas Sample G Water Sample W

FP Field permeability test over section noted

FV Field vane shear test expressed as uncorrected shear strength ( $s_v$  = peak value,  $s_r$  = residual value)

PID Photoionisation Detector reading in ppm PMPressuremeter test over section noted

PP Pocket penetrometer test expressed as instrument reading in kPa

U63 Thin walled tube sample - number indicates nominal sample diameter in millimetres

**WPT** Water pressure tests

**DCP** Dynamic cone penetration test **CPT** Static cone penetration test

CPTu Static cone penetration test with pore pressure (u) measurement

| Ranking of Visually | y Observable Contamination and Odour (10 | r specific soil c | ontamination assessment projects) |
|---------------------|------------------------------------------|-------------------|-----------------------------------|
| R = 0               | No visible evidence of contamination     | R = A             | No non-natural odours identified  |

| R = 0 | No visible evidence of contamination     | R = A | No non-natural odours identified       |
|-------|------------------------------------------|-------|----------------------------------------|
| R = 1 | Slight evidence of visible contamination | R = B | Slight non-natural odours identified   |
| R = 2 | Visible contamination                    | R = C | Moderate non-natural odours identified |
| R = 3 | Significant visible contamination        | R = D | Strong non-natural odours identified   |

#### **ROCK CORE RECOVERY**

TCR = Total Core Recovery (%) SCR = Solid Core Recovery (%)

\( \sum\_{\text{Length of cylindrical core recovered} \)

Length of core recovered × 100 ×100 Length of core run Length of core run

Axial lengths of core > 100 mm Length of core run

RQD = Rock Quality Designation (%)



# TERMS FOR ROCK MATERIAL STRENGTH & WEATHERING AND ABBREVIATIONS FOR DEFECT DESCRIPTIONS

#### **STRENGTH**

| Symbol | Term              | Point Load<br>Index, Is <sub>(50)</sub><br>(MPa) | Field Guide                                                                                                                                                                                                                                                               |
|--------|-------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EL     | Extremely<br>Low  | < 0.03                                           | Easily remoulded by hand to a material with soil properties.                                                                                                                                                                                                              |
| VL     | Very<br>Low       | 0.03 to 0.1                                      | Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30 mm can be broken by finger pressure.                                                                                      |
| L      | Low               | 0.1 to 0.3                                       | Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling. |
| М      | Medium            | 0.3 to 1                                         | Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.                                                                                                                                                         |
| Н      | High              | 1 to 3                                           | A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken with pick with a single firm blow; rock rings under hammer.                                                                                                                      |
| VH     | Very<br>High      | 3 to 10                                          | Hand specimen breaks with pick after more than one blow; rock rings under hammer.                                                                                                                                                                                         |
| EH     | Extremely<br>High | >10                                              | Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.                                                                                                                                                              |

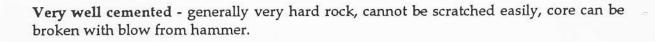
#### **ROCK STRENGTH TEST RESULTS**

▼ Point Load Strength Index, I<sub>s</sub>(50), Axial test (MPa)

Point Load Strength Index, I<sub>s</sub>(50), Diametral test (MPa)

Relationship between  $I_s(50)$  and UCS (unconfined compressive strength) will vary with rock type and strength, and should be determined on a site-specific basis. UCS is typically 10 to 30 x  $I_s(50)$ , but can be as low as 5.

| ROCK MATERIAL WEATHERING |      |          |            |
|--------------------------|------|----------|------------|
|                          | ROCK | MATERIAL | WEATHERING |


| Syn | nbol | Term                    | Field Guide                                                                                                                                                                                                                              |  |  |  |  |
|-----|------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| R   | S    | Residual<br>Soil        | Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported.                                        |  |  |  |  |
| E   | W    | Extremely<br>Weathered  | Rock is weathered to such an extent that it has soil properties - i.e. it either disintegrates or can be remoulded, in water.                                                                                                            |  |  |  |  |
|     | HW   |                         | Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by                                                                                                  |  |  |  |  |
| DW  | MW   | Distinctly<br>Weathered | leaching, or may be decreased due to deposition of weathering products in pores. In some environments it is convenient to subdivide into Highly Weathered and Moderately Weathered, with the degree of alteration typically less for MW. |  |  |  |  |
| S   | W    | Slightly<br>Weathered   | Rock is slightly discoloured but shows little or no change of strength relative to fresh rock.                                                                                                                                           |  |  |  |  |
| F   | R    | Fresh                   | Rock shows no sign of decomposition or staining.                                                                                                                                                                                         |  |  |  |  |

#### ABBREVIATIONS FOR DEFECT TYPES AND DESCRIPTIONS

| Defect Type | oe .                      | Coating   | or Infilling      | Roughnes    | ss                            |
|-------------|---------------------------|-----------|-------------------|-------------|-------------------------------|
| В           | Bedding parting           | Cn        | Clean             | SI          | Slickensided                  |
| X           | Foliation                 | Sn        | Stain             | Sm          | Smooth                        |
| С           | Contact                   | Vr        | Veneer            | Ro          | Rough                         |
| L           | Cleavage                  | Ct        | Coating or Infill |             | _                             |
| J           | Joint                     | Planarity | /                 |             |                               |
| SS/SZ       | Sheared seam/zone (Fault) | PI        | Planar            | Vertical B  | oreholes – The dip            |
| CS/CZ       | Crushed seam/zone (Fault) | Un        | Undulating        |             | from horizontal) of the       |
| DS/DZ       | Decomposed seam/zone      | St        | Stepped           | defect is g | iven.                         |
| IS/IZ       | Infilled seam/zone        |           |                   | Inclined B  | oreholes - The inclination is |
| S           | Schistocity               |           |                   | measured    | as the acute angle to the     |
| V           | Vein                      |           |                   | core axis.  | S                             |

# **CEMENTATION CLASSIFICATION**

# SIMPLIFIED CEMENTATION CLASSIFICATION SYSTEM FOR CEMENTED GRANULAR MATERIALS



Well cemented - hard rock, can be scratched with thumbnail, requires substantial effort to break core.

Moderately cemented - soft rock, easily scratched, generally friable, rock core can be broken by hand.

Weakly cemented - very soft rock, crushed between fingers.

Very weakly cemented - near uncemented sand.



CLIENT:

# REPORT OF BOREHOLE: VB1

SHEET: 1 OF 1

DRILL RIG: Geoprobe 66200DT

CONTRACTOR: DPP

PROJECT: Groundwater Assessment SURFACE RL: DATUM: AHD LOCATION: Oakford INCLINATION: 00° LOGGED: JH DATE: 28/6/17 JOB NO: 1779954 HOLE DEPTH: 5.00 m CHECKED: RT DATE: 4/8/17 Drilling Sampling **Field Material Description** SAMPLE OR SOIL/ROCK MATERIAL DESCRIPTION PIEZOMETER DETAILS FIELD TEST

COORDS: 397173.5 m 6433538.7 m

MOISTURE CONDITION CONSISTENCY DENSITY **USCS SYMBOL** RECOVERED GRAPHIC LOG WATER DEPTH (metres) *DEPTH* RL Stick-up 0.6m 0.00-0.10 m PID = 0.0ppm 0.10 fine to coarse grained, sub-rounded to sub-angular, black, trace silt, trace organics (rootlets) dark grey to grey 0.40-0.50 m PID = 0.3ppm Bentonite seal ¥ 0.90-1.00 m PID = 0.3 ppm 50mm Class 18 flush-threaded PVC М 1.40-1.50 m PID = 0.3 ppm 1.90-2.00 m PID = 0.2 ppm 2.20 white 2.40 - Filter pack 2.40-2.50 m PID = 0.4 ppm dark grey to black MD 16/08/2017 15:14 8.30.003 Datgel Tools 2.70 grey to white 2.90-3.00 m PID = 15.5 ppm 3 Ы 3.40-3.50 m PID = 25.9 ppm PAGE OAKFORD LOGS.GPJ <<DrawingFile>> W 3.90 3mm slotted Q13077-06 ON HOLD Silty SAND black, weakly cemented screen 3.90-4.00 m PID = 36.1 ppm Q13077-07 ON HOLD 4.40-4.50 m PID = 44.7ppm 4.60 Silty SAND End cap black, weakly cemented 4.90-5.00 m END OF BOREHOLE @ 5.00 m GROUNDWATER ENCOUNTERED @ 2.70 m DEPTH PIEZOMETER INSTALLED Rotten egg smell noted while drilling. Contaminated soil ranking 0B. GAP NON-CORED FULL PID = 9.8 ppm Pog GAP 8 15.0 LIB.GLB

This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for environmental purposes only, without attempt to consider geotechnical properties or the geotechnical significance of the materials encountered. As such it should not be relied upon for geotechnical purposes.



1779954

JOB NO:

# **REPORT OF BOREHOLE: VB2**

SHEET: 1 OF 1

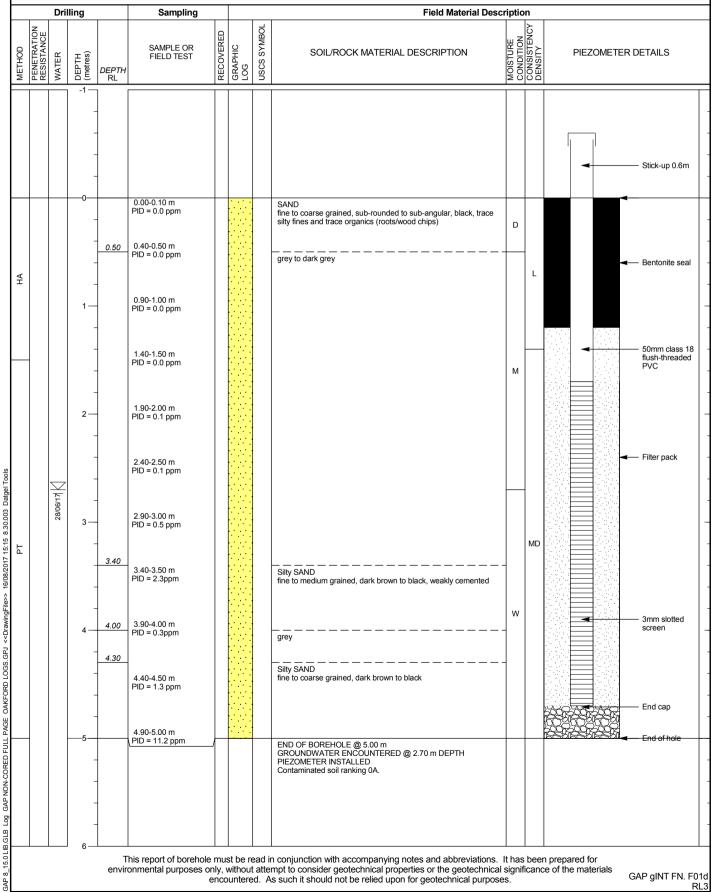
DATE: 28/6/17 LOGGED: JH CHECKED: RT DATE: 4/8/17

COORDS: 397255.4 m 6433529.4 m DRILL RIG: Geoprobe 66200DT PROJECT: Groundwater Assessment SURFACE RL: DATUM: AHD CONTRACTOR: DPP LOCATION: Oakford INCLINATION: 00°

HOLE DEPTH: 5.00 m

| Dr                                 | illing         |                    | Sampling                                                                                     |           |                |             | Field Material Desc                                                                                                                      | riptio | on          |                              |
|------------------------------------|----------------|--------------------|----------------------------------------------------------------------------------------------|-----------|----------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|------------------------------|
| PENETRATION<br>RESISTANCE<br>WATER | DEPTH (metres) | <i>DEPTH</i><br>RL |                                                                                              | RECOVERED | GRAPHIC<br>LOG | USCS SYMBOL | SOIL/ROCK MATERIAL DESCRIPTION                                                                                                           |        | CONSISTENCY | PIEZOMETER DETAILS           |
|                                    | -1             | -                  |                                                                                              |           |                |             |                                                                                                                                          |        |             | Stick-up 0.6n                |
|                                    | - 1            | 0.30               | 0.00-0.10 m<br>PID = 1.1 ppm<br>0.40-0.50 m<br>PID = 0.2 ppm<br>0.90-1.00 m<br>PID = 0.2 ppm |           |                |             | SAND fine to coarse grained, sub-rounded to sub-angular, black, with trace silty fines and trace organics (rootlets and woodchips)  grey | D      | L           | ■ Bentonite sea              |
|                                    | 2-             | -                  | 1.40-1.50 m<br>PID = 0.1 ppm<br>1.90-2.00 m<br>PID = 0.1 ppm                                 |           |                |             |                                                                                                                                          | М      |             | 50mm Class flush-threade PVC |
| 28/06/17                           | 3-             | -                  | 2.40-2.50 m<br>PID = 0.1 ppm<br>2.90-3.00 m<br>PID = 0.3 ppm                                 |           |                |             |                                                                                                                                          |        |             | Filter pack                  |
|                                    | 4-             | 4.10               | 3.40-3.50 m<br>PID = 0.5 ppm<br>3.90-4.00 m<br>PID = 0.5 ppm                                 |           |                |             |                                                                                                                                          | w      | MD          | 3mm slotted screen           |
|                                    | 5              | 4.50               | Q13077-05 ON HOLD<br>4.40-4.50 m<br>PID = 21.8 ppm<br>4.90-5.00 m<br>PID = 7.7 ppm           |           |                |             | Sitty SAND dark brown to black  weakly cemented  END OF BOREHOLE @ 5.00 m                                                                |        |             | End cap  End of hole         |
|                                    | -5             |                    |                                                                                              |           |                |             | END OF BOREHOLE @ 5.00 m<br>GROUNDWATER ENCOUNTERED @ 2.70 m DEPTH<br>PIEZOMETER INSTALLED<br>Contaminated soil ranking 0A.              |        |             | End of hole                  |




# **REPORT OF BOREHOLE: VB3**

SHEET: 1 OF 1

DRILL RIG: Geoprobe 66200DT

LOGGED: JH DATE: 28/6/17 CHECKED: RT DATE: 4/8/17

CLIENT: COORDS: 397236.1 m 6433438.0 m PROJECT: Groundwater Assessment SURFACE RL: DATUM: AHD CONTRACTOR: DPP LOCATION: Oakford INCLINATION: 00° JOB NO: 1779954 HOLE DEPTH: 5.00 m



This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for environmental purposes only, without attempt to consider geotechnical properties or the geotechnical significance of the materials encountered. As such it should not be relied upon for geotechnical purposes.



CLIENT:

# REPORT OF BOREHOLE: VB4

SHEET: 1 OF 1

DRILL RIG: Geoprobe 66200DT

CONTRACTOR: DPP

LOGGED: JH DATE: 28/6/17 CHECKED: RT DATE: 4/8/17

COORDS: 397567.1 m 6433481.0 m PROJECT: Groundwater Assessment SURFACE RL: DATUM: AHD

LOCATION: Oakford INCLINATION: 00° JOB NO: 1779954 HOLE DEPTH: 4.50 m

Drilling Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY **USCS SYMBOL** RECOVERED SAMPLE OR GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION PIEZOMETER DETAILS WATER DEPTH (metres) FIELD TEST *DEPTH* RL Stick-up 0.6m 0.00-0.05 m PID = 0.0 ppm medium to coarse grained, sub-rounded to sub-angular, black, with trace silty fines and trace organics (wood chips) 0.30 black to grey 0.50-0.60 m L Bentonite seal PID = 0.0 ppm ¥ 0.80 grey 0.90-1.00 m PID = 0.0 ppm М 50mm Class 18 flush-threaded PVC 1.40-1.50 m PID = 0.1 ppm1.90-2.00 m PID = 0.7 ppm 2.00 - Filter pack Q13077-03 ON HOLD 2.40-2.50 m 16/08/2017 15:15 8:30:003 Datgel Tools PID = 3.4 ppm 2.70 white to grey MD Q13077-01 ON HOLD 3 Ы 2.90-3.00 m PID = 48.6 ppm W 3.40-3.50 m PID = 0.3 ppm GAP 8\_15.0 LIB.GLB Log GAP NON-CORED FULL PAGE OAKFORD LOGS.GPJ <<DrawingFile>> 3mm slotted Q13077-02 ON HOLD screen 3.90-4.00 m 4.10 PID = 62.8 ppm Silty SAND fine to medium grained, dark brown to black, weakly cemented 4.40-4.50 m PID = 10.4 ppm END OF BOREHOLE @ 4.50 m GROUNDWATER ENCOUNTERED @ 2.70 m DEPTH PIEZOMETER INSTALLED Rotten egg smell noted while drilling. Contaminated soil ranking 0B. End cap 5

This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for environmental purposes only, without attempt to consider geotechnical properties or the geotechnical significance of the materials encountered. As such it should not be relied upon for geotechnical purposes.

GAP gINT FN. F01d RL3



PROJECT: Groundwater Assessment

CLIENT:

### **REPORT OF BOREHOLE: VB5**

SHEET: 1 OF 1

DRILL RIG: Geoprobe 66200DT

CONTRACTOR: DPP

LOGGED: JH DATE: 28/6/17

LOCATION: Oakford INCLINATION: 00° JOB NO: 1779954 HOLE DEPTH: 5.00 m CHECKED: RT DATE: 4/8/17 Drilling Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY **USCS SYMBOL** RECOVERED SAMPLE OR GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION PIEZOMETER DETAILS WATER DEPTH (metres) FIELD TEST *DEPTH* RL Stick-up 0.6m 0.00-0.10 m PID = 0.1ppm medium to coarse grained, sub-rounded to sub-angular, black, with trace silty fines and trace organics (wood chips) Backfill 0.40-0.50 m PID = 0.2ppm 0.50 grey to pale brown, trace silty fines ¥ 0.90-1.00 m PID = 0.3ppm Bentonite seal 50mm Class 18 flush-threaded PVC М 1.40-1.50 m PID = 0.3ppm1.90-2.00 m PID = 15.6 ppm - Filter pack 2.40-2.50 m PID = 28.2ppm Ы 16/08/2017 15:15 8.30.003 Datgel Tools Q13077-04 ON HOLD 3 3mm slotted 2.90-3.00 m PID = 46.6ppm MD screen 3.30 3.30-3.40 m Silty SAND PID = 8.8 ppm fine to coarse grained, black to dark brown, weak to medium cementation PAGE OAKFORD LOGS.GPJ <<DrawingFile>> W 4.00 4.00-4.10 m PID = 15.4 ppm brown to grey AS 4.40-4.50 m PID = 4.1 ppm 4.90-5.00 m END OF BOREHOLE @ 5.00 m GROUNDWATER ENCOUNTERED @ 2.70 m DEPTH PIEZOMETER INSTALLED Rotten egg smell noted while drilling. Contaminated soil ranking 0B. GAP NON-CORED FULL PID = 9.0 ppm End of hole Pog GAP 8 15.0 LIB.GLB

COORDS: 397569.0 m 6433228.6 m

SURFACE RL: DATUM: AHD

This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for environmental purposes only, without attempt to consider geotechnical properties or the geotechnical significance of the materials encountered. As such it should not be relied upon for geotechnical purposes.

GAP gINT FN. F01d RL3



# **APPENDIX B**

**Calibration Certificates** 





### **Calibration Report**

### **Multi-Parameter Water Quality Instrument**

Customer: Golder

Manufacturer: YSI

Contact: Jess

Instrument: Professional Plus with Quatro cable

Serial #: 13J100087

Cable length: 1m

| Item                         | Test                            | Pass     | Comments                                             |
|------------------------------|---------------------------------|----------|------------------------------------------------------|
| Battery                      | 2 x Alkaline C-cells            | <b>√</b> | Voltage reading above 2.9V                           |
|                              | Battery Saver                   | <b>✓</b> | Automatically turns off after 60 minutes if not used |
| Connections                  | Condition                       | <b>√</b> | Good, clean                                          |
| Cable                        | Condition                       | 1        | Clean, no tears                                      |
| Display                      | Operation                       | <b>√</b> |                                                      |
| Firmware                     | Version                         | 1        | 4.0.0                                                |
| Keypad                       | Operational                     | 1        |                                                      |
| Display                      | Screen                          | ✓        |                                                      |
| Unit                         | Condition, seals and O-rings    | <b>√</b> |                                                      |
| Monitor housing              | Condition                       | ✓        |                                                      |
| рН                           |                                 |          |                                                      |
| Condition                    |                                 | <b>√</b> | Good, clean                                          |
| pH millivolts for pH7 calibr | ation range 0 mV ± 50 mV        | <b>✓</b> |                                                      |
|                              | 180 from 7 buffer mV value      | <b>✓</b> | 168.40 mV                                            |
| pH slope                     |                                 | <b>√</b> | 55 to 60 mV/pH, ideal 59mV                           |
| Response time < 90 secon     | ds                              | <b>✓</b> |                                                      |
| Calibrated and conforms to   | o manufacturer's specifications | <b>✓</b> |                                                      |
| ORP                          |                                 |          |                                                      |
| Condition                    |                                 | 1        | Good, clean                                          |
| Response time < 90 secon     | ds                              | 1        |                                                      |
| within ± 80mv of reference   | Zobell Reading                  | <b>√</b> |                                                      |
| Calibrated and conforms to   | manufacturer's specifications   | <b>√</b> | variance range ± 20mV 1 mV                           |
| Conductivity                 |                                 |          |                                                      |
| Condition                    |                                 | <b>√</b> | Good, clean                                          |
| Temperature                  |                                 | <b>√</b> | °C                                                   |
| Conductivity cell constant   | 5.0 ± 1.0 in GLP file           | <b>✓</b> |                                                      |
| Clean sensor reads less tha  | in 3 uS/cm in dry air           | <b>√</b> |                                                      |
|                              | manufacturer's specifications   | <b>/</b> | μs/cm                                                |
| Dissolved Oxygen             |                                 |          |                                                      |
| Condition                    |                                 | 1        | Good, clean                                          |
| OO sensor in use             |                                 | 1        | Galvanic                                             |
| 1.25 mil PE membrane (ye     | llow membrane):                 | 1        |                                                      |
| DO Sensor Value              |                                 | 1        | (min 4.31 uA - max 8.00 uA) Avg 6.15 uA              |
|                              | manufacturer's specifications   |          | ppm                                                  |

This is to certify that the above instrument has been calibrated to the following specifications:

Instrument Readings

|                            |                          |             |                   |        |       | mstru  | ment readi | ,P.,  |
|----------------------------|--------------------------|-------------|-------------------|--------|-------|--------|------------|-------|
| Parameter                  | Standards                | Reference   | Calibration Point | Span   | Units | Before | After      | Units |
| Temperature                | Center 370 Thermometer   | Room Temp   | 20.5              | -0.2   | °C    | NA     | 20.3       | °C    |
| pH                         | pH 7.00                  | NF1971      | 7.01              | -58.90 | mV    | 7.03   | 7.01       | pН    |
| pH                         | pH 4.00                  | NF1636      | 4.00              | 109.50 | mV    | 3.94   | 4.00       | рН    |
| Conductivity               | 2760 µs/cm at 25°C       | NF2046      | 2760              | GLP    | 5.14  | 2720   | 2760       | μs/cm |
| ORP (Reference check only) | Zobell A & B             | NG1334/1335 | 239               | 239    | mV    | 228.8  | 238.2      | mV    |
| Zero Dissolved Oxygen      | NaSO3 in distilled water | 1504192304  | 0.0               | NA     | NA    | 1.4    | 0.0        | %     |
| 100% Dissolved Oxygen      | 100% Air Saturation      | Air         | 100.0             | 4.96   | uA    | 105.2  | 100        | %     |

Calibrated by: Gaurav Kanwar

Calibration Date: 06-Jun-17

Next Due: 06-Jul-17

Melbourne Head Office Sydney 514 Lvl 2 Perth Unit 6 Brisbane Unit 17 2 Merchant Avenue 6-8 Holden Street 41 Holder Way 23 Ashtan Place

THOMASTOWN VIC 3074 ASHFIELD NSW 2131 MALAGA WA 6090 BANYO QLD 4014 T: +(613) 9464 2300 T: +(612) 9716 5966 T: +(618) 9249 5663 T: +(617) 3267 1433 F: +(613) 9464 3421 F: +(612) 9716 5988 F: +(618) 9249 5362 F: +(617) 3267 3559



### **Calibration Report**

#### MiniRAE 3000 - VOC

Customer: Contact: Manufacturer: RAE Systems Instrument: MiniRAE 3000 Model: PGM-7320 Serial #: 592-915478

| ltem            | Test                   | Pass     | Comments                                           |  |  |  |
|-----------------|------------------------|----------|----------------------------------------------------|--|--|--|
| Battery         | Li Ion                 | ✓        | 4.2v/3300mAH rechargeable Lithium-Ion battery pack |  |  |  |
| Charger         | Charger, Power supply  | <b>√</b> |                                                    |  |  |  |
|                 | Cradle, travel charger | 1        |                                                    |  |  |  |
| Filter          | Filter, fitting, etc   | ✓        |                                                    |  |  |  |
| Alarms          | Alarm Mode             | 1        | Auto Reset                                         |  |  |  |
|                 | Buzzer & Light         | 1        | Both On                                            |  |  |  |
| Datalogger      | Datalog                | 1        | Cleared                                            |  |  |  |
|                 | Interval               | 1        | 60 secs                                            |  |  |  |
|                 | Data Selection         | 1        | Minimum, Average, Maximum                          |  |  |  |
|                 | Datalog Type           | ✓        | Auto                                               |  |  |  |
| Display         | Operation              | 1        |                                                    |  |  |  |
| Switches        | Operation              | 1        |                                                    |  |  |  |
| PCB             | Operation - Main       | 1        |                                                    |  |  |  |
| Connectors      | Charging port          | 1        |                                                    |  |  |  |
| Firmware        | Version                | ✓        | 2.14                                               |  |  |  |
| Monitor         | Operation mode         | 1        | Hygiene mode                                       |  |  |  |
|                 | User mode              | 1        | Advanced                                           |  |  |  |
|                 | Time                   | ✓        | 24 hour                                            |  |  |  |
|                 | Pump Duty Cycle        | 1        | 100%                                               |  |  |  |
|                 | Pump Speed             | 1        | High                                               |  |  |  |
|                 | Pump Flow Rate         | <b>√</b> | >400 ml/min                                        |  |  |  |
|                 | Temperature            | 1        | Degree Celsius                                     |  |  |  |
|                 | Real Time Protocol     | <b>√</b> | P2P (cable)                                        |  |  |  |
|                 | Power on Zero          | <b>✓</b> | Off                                                |  |  |  |
|                 | Lamp ID                | 1        | 10.6 eV                                            |  |  |  |
| Monitor housing | Condition              | 1        | Clean                                              |  |  |  |
| Case            | Rubber boot            | <b>✓</b> | Yellow                                             |  |  |  |
|                 | *                      |          | Alarms                                             |  |  |  |
|                 |                        |          |                                                    |  |  |  |

 Sensors
 High
 Low
 STEL
 TWA

 VOC
 100 ppm
 50 ppm
 25 ppm
 10 ppm

This is to certify that the above instrument has been calibrated to the following specifications:

| Sensor | Lamp ID | Span Gas    | Concentration | Cyl. No.   | CF | Zero    | Span      |
|--------|---------|-------------|---------------|------------|----|---------|-----------|
| VOC    |         | Isobutylene | 100 ppm       | WO137773-1 | 1  | 0.0 ppm | 100.0 ppm |

Calibrated by: Gaurav Kanwar

Calibration Date: 07-Jun-17

Next Due: 07-Jul-17

Melbourne Head Office Sydney 514 Lvl 2

Perth

Brisbane

Head Office 2 Merchant Avenue 514 Lvl 2 6-8 Holden Street Unit 6 41 Holder Way Unit 17 23 Ashtan Place THOMASTOWN VIC 3074 ASHFIELD NSW 2131 MALAGA WA 6090

QLD 4014

T: +(613) 9464 2300 T: +(612) 9716 5966 T: +(618) 9249 5663

T: +(617) 3267 1433

F: +(613) 9464 3421 F: +(612) 9716 5988 F: +(618) 9249 5362 F: +(617) 3267 3559

sales@aesolutions.com.au

ISO Certified 9001:2008

BANYO

www.aesolutions.com.au



# **ENVIRONMENTAL FIELD EQUIPMENT CHECKLIST**

| Instrument Supplier:  LGM PRE TIME: POST TIME:  AIR CAL GAS AIR CA  2.5% CH4  CO2  18% O2  50ppm CO  10ppm H <sub>2</sub> S  Balance  PID ACCEPTABLE RANGE PRE POST  Isobutonyl (100 ppm) 90-110 ppm  Air 0 - 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AL GAS |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Field Person:  Instrument Supplier:  LGM PRE TIME: POST TIME:  AIR CAL GAS AIR CA  2.5% CH4  CO2  18% O2  SOppm CO  10ppm H <sub>2</sub> S  Balance  PID ACCEPTABLE RANGE PRE POST  Isobutonyl (100 ppm) 90-110 ppm  Air 0 - 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| LGM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| AIR   CAL GAS   AIR   CAL GAS   CA   |        |
| AIR   CAL GAS   AIR   CAL GAS   CA   |        |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| CO2   18%   O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
| 18%   O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
| PID ACCEPTABLE RANGE PRE POST Isobutonyl (100 ppm) 90-110 ppm 90-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| PID ACCEPTABLE RANGE PRE POST Isobutonyl (100 ppm) 90-110 ppm 90-10 ppm 90-1 |        |
| PID         ACCEPTABLE RANGE         PRE         POST           Isobutonyl (100 ppm)         90-110 ppm         06.8         91.           Air         0 - 0.5         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| Isobutonyl (100 ppm)         90-110 ppm         6.8         91.           Air         0 - 0.5         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| Isobutonyl (100 ppm)         90-110 ppm         6.8         91.           Air         0 - 0.5         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| Air 0-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0      |
| LEL PRE TIME: POST TIME:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AL GAS |
| 50ppm CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
| 10ppm H <sub>2</sub> S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| 18% O <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| LEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |

# Water Quality Meter Calibration Sheet

Name

| Job           | 17 19954 |                     |
|---------------|----------|---------------------|
| Date and time | 10/10/17 | WQ meter make/model |

| Parameter        | Standard Solution      | Pre-sampling reading | Acceptable range                       | Calibration Required (y/n) | Post-sampling Reading |  |  |
|------------------|------------------------|----------------------|----------------------------------------|----------------------------|-----------------------|--|--|
| Temperature      | °C                     | 10                   | ± 0.5°C                                | N/a                        | 16°                   |  |  |
| рН               | 4                      | 3.96                 | 3.9 - 4.1                              |                            | 3.98                  |  |  |
| рп               | 7                      | 7.02                 | 6.9 - 7.1                              | ٨١                         | 7.06                  |  |  |
| Conductivity     | 2 760 1288 m S/cm@25°C | 2738                 | ±5%                                    | N                          | 2746                  |  |  |
| conductivity     | 35 m S/em@25°C         | NA                   | ±5%                                    | NH                         | NIA                   |  |  |
| Dissolved Oxygen | 0% saturation solution | 0-0                  | ±0.1 ppm                               | A /                        | 0-0                   |  |  |
| NOSONEG ONYSCH   | Ambient Air            | 9.38                 | ± 0.5 ppm of value on Table A overleaf | NIA                        | 9-88                  |  |  |
| Redox            | 240mv@ <u></u>         | 238                  | ±10mV                                  | N.                         | Z3E.                  |  |  |



# **APPENDIX C**

**Waste Disposal Certificate** 





## **CERTIFICATE OF DISPOSAL**

**CERTIFICATE NUMBER: 0187747** 

This is to certify that Toxfree Australia Pty Ltd (TES Kwinana) has treated and disposed of the material as detailed below at Lot 4, Mason Road Kwinana. This plant is licensed by The Department of Environmental Conservation for the treatment of such material. Licence No: L6297/1993/11.

Details of material destroyed:

Source of material:

**GOLDER ASSOCIATES** 

**Project No.: 1779954** 

Material:

1 x 205L Drum of Purged Ground Water - Class III or Less

1 x 20L Drum of Purged Ground Water – Class III or Less

1 x 205L Drum of Drilling Soil – Class III or Less

Date received:

26/07/2017

Signed on behalf of Tox Free:

Name:

Position:

Date:

Steve Ashton

Operations Manager

26/07/2017

NOTE THAT THE ABOVE RECORDS CAN BE VERIFIED BY REFERENCE TO THE PLANT PRODUCTION LOGS RETAINED AT TOX FREE AUSTRALIA PTY LTD PREMISES IN KWINANA.



# **APPENDIX D**

**Chain of Custody Documentation** 



Q 13077 page\_of\_



1 Havelock Street

| Project Number: 17799           | 54                                          | Laboratory Name: Further MCT |                  |  |  |  |  |  |  |
|---------------------------------|---------------------------------------------|------------------------------|------------------|--|--|--|--|--|--|
| <b>10.15 中</b>                  |                                             | Address: 91 Lac              | ich Hur leendale |  |  |  |  |  |  |
| Golder Contact:<br>Sarah Garvey | Golder Email Address: Suable @golder.com.au | Telephone/Fax: 92519600      | Contact:         |  |  |  |  |  |  |

| West Perth, WA 6005 Australia Telehone +61 8 9213 7600 Fax +61 8 92       | 13 7611    |            | Contact:                   | urces           | Suga                            |            | golder.              | com.aı |            | Teleph    | one/Fa   | x: /   | 360     | Ø.      | C      | Contact |      | 7 19 19                  |
|---------------------------------------------------------------------------|------------|------------|----------------------------|-----------------|---------------------------------|------------|----------------------|--------|------------|-----------|----------|--------|---------|---------|--------|---------|------|--------------------------|
| Address where reports should be sent to                                   |            | 1,10       | Jess Ma                    | 4               | J/v                             | an C       |                      |        |            |           |          | А      | nalyse  | s Requ  | uired  |         |      |                          |
| West Perth, WA 6872<br>Telephone (61 8) 9213 7600<br>Fax (61 8) 9213 7611 | Other      |            | mai)                       |                 | te: 1704741                     | colu       | ontainers            | >      | (28)       | (8) May a |          |        |         |         |        |         |      | ) 4000<br>3011<br>3915 J |
| Sample Control<br>Number (SCN                                             |            |            | Date<br>Sampled<br>(D/M/Y) |                 |                                 |            | Number of Containers | 4000   | PALS SOLIA | Total m   |          |        |         |         |        |         | RUSH | Remarks<br>(over)        |
| 013077-01                                                                 |            | 5          | 28/6/17                    |                 |                                 |            | 1                    | X      |            |           | Si       |        |         |         |        |         |      |                          |
| - 02                                                                      |            |            |                            |                 |                                 |            | A                    | X      |            |           |          |        |         |         |        |         |      |                          |
| - 03                                                                      |            |            |                            |                 |                                 |            | 1                    | X      |            |           |          |        |         |         |        |         |      |                          |
| - 04                                                                      |            |            |                            |                 |                                 |            | 1                    | X      |            |           |          |        |         |         |        |         |      |                          |
| - 05                                                                      |            |            |                            |                 |                                 |            |                      | X      |            |           |          |        |         |         |        |         |      |                          |
| - 06                                                                      |            |            |                            |                 |                                 |            |                      | X      |            |           |          |        |         |         |        |         |      |                          |
| EJA 2-07                                                                  |            | V          |                            |                 |                                 |            | 1                    | X      |            | K.S.      |          |        |         |         |        |         | 验    |                          |
| - 08                                                                      |            | W          | V                          |                 |                                 |            | 1                    |        | X          | X         |          | 8.5    |         |         |        |         |      |                          |
| - 09                                                                      |            |            |                            |                 |                                 |            |                      |        | K          |           |          |        |         |         |        |         |      |                          |
| T'MULES 10                                                                |            |            |                            |                 |                                 |            | 5                    |        |            |           |          |        |         |         | 3.5    |         |      |                          |
| - 11                                                                      |            |            | 1788                       |                 |                                 |            |                      |        |            |           |          |        |         |         |        |         |      |                          |
| - 12                                                                      |            |            |                            |                 |                                 |            | 1                    |        |            |           |          |        |         |         |        |         |      |                          |
| Sampler's Signature:                                                      | Relinquish | ed by: Sig | nature (                   |                 | Company                         | Date 29(6) | 17                   |        | Tim        | е         |          | Rece   | eived b | y: Sigr | nature |         | Comp | pany                     |
| Sample Storage (°C)                                                       | Relinquish | ed by: Sig | nature                     |                 | Company                         | Date       |                      |        | Tim        | e         |          | Rece   | eived b | y; Sigr | nature |         | Comp | pany                     |
| Comments:                                                                 | Method of  | Shipment   |                            |                 | Waybill No:                     |            |                      | Rec    |            | for La    | b by:    |        | 7       | Date    | 2/6    |         |      | Time                     |
|                                                                           | Shipped by | y:         | en Brand                   | Title<br>Strike | Shipment Condition Seal intact: | n:         |                      | Ten    | np (°C)    | Co        | poler op | ened b | y:      | Date    |        |         |      | Time                     |

550310

Q 00185 page\_of\_)

2006 - # 170+24 Golw

1 Havelock Street

| Project Number: 1749950 | 1                                     | Laboratory Name: |          |  |  |  |  |  |
|-------------------------|---------------------------------------|------------------|----------|--|--|--|--|--|
| <b>《李秋·</b> 泉》于200      |                                       | Address:         |          |  |  |  |  |  |
| Golder Contact:         | Golder Email Address:  @golder.com.au | Telephone/Fax:   | Contact: |  |  |  |  |  |

| West Perth, WA 6005 Australia Telehone +61 8 9213 7600 Fax +61 8 921      | 3 7611 Gold                | er Contact:                | Golder           | Email Address:          | jolder.c             | com.au   | Te       | elepho                      | ne/Fax | c -     |          |                    | Contact:  |      |                   |  |
|---------------------------------------------------------------------------|----------------------------|----------------------------|------------------|-------------------------|----------------------|----------|----------|-----------------------------|--------|---------|----------|--------------------|-----------|------|-------------------|--|
| Address where reports should be sent to                                   | (C)                        | holloyd                    |                  |                         |                      |          |          | Analyses Required           |        |         |          |                    |           |      |                   |  |
| West Perth, WA 6872<br>Telephone (61 8) 9213 7600<br>Fax (61 8) 9213 7611 | Other Phone                | Fax                        |                  |                         | ontainers            | xlad.    | 24GOLW   | Sinle                       | Slonk  |         | SSUL     | )                  |           |      |                   |  |
| Sample Control<br>Number (SCN                                             | Sample<br>Matrix<br>(over) | Date<br>Sampled<br>(D/M/Y) |                  |                         | Number of Containers | 111/ 295 | 4/404    | Male                        | The f  |         | Khale    | 1000               |           | RUSH | Remarks<br>(over) |  |
| ) as   C - 01                                                             | W                          | 10/7                       |                  |                         | 0                    |          |          | V                           |        |         |          |                    |           |      |                   |  |
| - 02                                                                      | W                          |                            |                  |                         | a                    | 1        |          | V                           |        |         |          | 1                  |           |      |                   |  |
| - 03                                                                      | W                          |                            |                  |                         | 9                    |          |          | V                           |        | P P     |          |                    |           |      |                   |  |
| - 04                                                                      | W                          |                            |                  |                         | a                    |          |          | V                           |        |         |          | 1                  |           |      | West Control      |  |
| - 05                                                                      | 10/                        |                            |                  |                         | 9                    |          | 1        | 1                           |        |         |          |                    |           |      |                   |  |
| - 06                                                                      | W/                         |                            |                  |                         | q                    |          |          | V                           |        |         | 1        |                    |           |      |                   |  |
| - 07                                                                      | 10/                        | 1/                         |                  |                         | 1                    |          |          |                             | 1      |         |          |                    |           |      |                   |  |
| - 08                                                                      | S                          |                            |                  |                         | 7                    |          |          |                             | N      |         | 1        | 1                  |           |      |                   |  |
| - 09                                                                      | -92                        | 4                          |                  |                         | Ema                  | 810      |          | -                           |        |         | 55%      |                    |           |      |                   |  |
| - 10                                                                      | Seguen.                    |                            |                  |                         |                      | -        |          |                             | -      |         | 20%      |                    |           |      |                   |  |
| (-11                                                                      |                            |                            |                  |                         |                      |          |          |                             | -      |         |          |                    |           | -    |                   |  |
| - 12                                                                      |                            |                            |                  |                         |                      |          |          |                             |        |         |          |                    |           | +    |                   |  |
|                                                                           |                            |                            |                  |                         |                      |          |          |                             |        |         |          |                    | Ш         |      |                   |  |
| mpler's Signature:                                                        | Relinquished by: S         | ignature                   | Company          | Date 0/-                | 7                    |          | Time     |                             |        | Receive | d by: Si | gnatur             | е         | Comp | pany              |  |
| ple Storage (°C)                                                          | Relinquished by: S         | ignature                   | Company          | Date                    |                      |          | Time     |                             |        | Receive | d by: Si | gnatur             | е         | Comp | pany              |  |
| nents:                                                                    | Method of Shipmer          | nt                         | Waybill No:      |                         |                      | Rece     | eived fo | or Lab                      | þy: M  | 45      | Dat      | te <sub>10</sub> / | 7/17      |      | Timel4:58         |  |
|                                                                           | Shipped by:                |                            | Shipment Conditi | Shipment Condition: Tel |                      |          |          | Temp (°C) Cooler opened by: |        |         |          |                    | Date Time |      |                   |  |

553774

Q 13077 page\_

| Golder     |
|------------|
| Associates |

1 Havelock Street
West Perth, WA 6005 Australia
Telehone +61 8 9213 7600 Fax +61 8 9213 7611

| Project Number: | 177995   | 74                                           | Laboratory Name: | Further | u mat    |          |
|-----------------|----------|----------------------------------------------|------------------|---------|----------|----------|
| Short Title     | Oarefold |                                              | Address:         | 911 Lao | ich Hur  | leendare |
| Golder Contact: | auvey    | Golder Email Address: Squirey @golder.com.au | Telephone/Fax:   | 9600    | Contact: | )        |

| Telehone +61 8 921                              | 3 7600 Fax              | +61 8 92 | 13 7611                | S                          | er Contact:                | acrock                     | 1                        | Sgadi                  | <del>-)</del>            | golder.c             | com.au |            | elephone/i  | 2519          | 60       |          | Contact. |      |                   |  |
|-------------------------------------------------|-------------------------|----------|------------------------|----------------------------|----------------------------|----------------------------|--------------------------|------------------------|--------------------------|----------------------|--------|------------|-------------|---------------|----------|----------|----------|------|-------------------|--|
| Address where rep                               | orts should be          |          | ,                      |                            | JCSJ 1                     | lay                        |                          | jh                     | ance                     |                      |        |            |             | An            | alyses I | Required |          |      |                   |  |
| PO Box 191 West Perth, Telephone ( Fax (61 8) 9 | WA 6872<br>61 8) 9213 7 |          | Other                  | е                          | mail                       | QU                         | ik: 17042490LW           |                        |                          |                      |        | 28)        | Fals (8)    |               |          |          |          |      | 5-8               |  |
| 1 4% (01 0) 5                                   | 2107011                 |          | Phone                  |                            |                            | Fax                        |                          |                        |                          | ontain               |        |            | meta        |               |          |          |          |      | 15 had            |  |
| Sample Control<br>Number (SCN                   | Sample<br>Location      | Sa#      | Sample<br>Depth<br>(m) | Sample<br>Matrix<br>(over) | Date<br>Sampled<br>(D/M/Y) | Time<br>Sampled<br>(HH/MM) | Sample<br>Type<br>(over) | QAQC<br>Code<br>(over) | Related<br>SCN<br>(over) | Number of Containers | 1001+  | PFAS SUITE | Total       |               |          |          |          | RUSH | Remarks<br>(over) |  |
| @3077-01                                        | VB4                     |          | 29-3.0                 | \$                         | 28/6/17                    |                            |                          |                        |                          | 1                    | X      |            |             |               |          |          |          |      |                   |  |
| - 02                                            | VBY                     |          | 3.9-4.0                |                            |                            |                            |                          |                        |                          | 1                    | X      |            |             |               |          |          |          |      |                   |  |
| - 03                                            | VBY                     |          | 2.4-2.5                |                            |                            |                            |                          |                        |                          |                      | X      |            |             |               |          |          |          |      |                   |  |
| - 04                                            | VB5                     |          | 29-3.0                 |                            |                            |                            |                          |                        |                          | 1                    | ×      |            |             |               |          |          |          | Ш    |                   |  |
|                                                 | , NB5                   |          | 9,445                  |                            |                            |                            |                          |                        |                          |                      | >      |            |             |               |          |          |          | -    |                   |  |
| - 06                                            | NEJ                     |          | 39-                    |                            | 71                         |                            |                          |                        |                          | 1                    | ×      |            |             |               |          |          |          |      |                   |  |
| - 07                                            | 001                     |          | 4.4-                   | V                          |                            |                            |                          |                        |                          |                      | X      |            |             |               |          |          |          |      |                   |  |
| V - 08                                          | NBI                     |          |                        | W                          | V                          |                            |                          | RIVERLE                |                          | 1                    |        | X          | X           |               |          |          |          |      |                   |  |
| - 09                                            |                         |          |                        |                            |                            |                            |                          | TI T                   | 11.011                   |                      |        |            |             |               | $\perp$  |          |          |      |                   |  |
| - 10                                            |                         |          |                        |                            |                            |                            |                          |                        |                          |                      |        |            |             | $\perp \perp$ | _        | $\perp$  | $\perp$  | Ш    |                   |  |
| - 11                                            |                         |          |                        |                            |                            |                            |                          |                        |                          |                      |        |            |             |               | _        | _        | _        | Ш    | /                 |  |
| - 12                                            |                         |          |                        |                            |                            |                            |                          |                        |                          |                      |        |            |             |               |          |          |          |      |                   |  |
| Sampler's Signature                             | 4                       |          | Relinqui               | shed by: S                 | Signature                  | 5                          | Compar<br>Q A ()         | ny<br>le               | Date 29(6                | 117                  |        | Tim        | e           | Rece          | ived by: | Signatu  | re       | Com  | pany              |  |
| Sample Storage (°C)                             | ICF                     | -        | Relinqui               | shed by: S                 | Signature                  |                            | Compar                   | ту                     | Date                     |                      |        | Tim        | е           | Rece          | ived by: | Signatu  | ге       | Com  | pany              |  |
| Comments:                                       |                         |          | Method                 | of Shipme                  | nt:                        |                            | Waybill                  | No:                    | 12.                      |                      | Red    | ceived     | for Lab by: | : Date Ti     |          |          | Time     |      |                   |  |
|                                                 |                         |          | Shipped                | l by:                      |                            | 8                          | Shipme<br>Seal into      | nt Condition           | n:                       |                      | Ter    | np (°C)    | Cooler      | opened by     | r:       | Date     |          |      | Tim/              |  |

Q 00185 page of

| Associates |
|------------|
|------------|

| Project Number: 1719 | 954                         |               | Laboratory Na | me:    | 90       | m      |     |    |
|----------------------|-----------------------------|---------------|---------------|--------|----------|--------|-----|----|
| Short Title: OakCor  | J                           |               | Address:      |        |          |        |     | in |
| Solder Contact:      | Golder Email Address:<br>@g | golder.com.au | Telephone/Fax | C:     | E I      | Contac | ot: |    |
| Molado               |                             |               |               | Analys | ses Requ | ired   | _   |    |

| est Perth, WA 60<br>lehone +61 8 921                        | 3 7600 Fax               | +61 8 92 | 213 7611               | Sold                       | er Contact:                |                              |                          | Golder E               | mail Address:<br>@       | golder.c             | com.au   | Telep      | none/Fa  | iX:       |           |         | Contact  | t:       |                   |
|-------------------------------------------------------------|--------------------------|----------|------------------------|----------------------------|----------------------------|------------------------------|--------------------------|------------------------|--------------------------|----------------------|----------|------------|----------|-----------|-----------|---------|----------|----------|-------------------|
| Address where rep                                           | orts should be           | sent to  | (                      | Om                         | Calla                      |                              |                          |                        |                          | T                    |          |            |          | Ana       | alyses Re | eauirea |          |          |                   |
| PO Box 19 <sup>2</sup> West Perth, Telephone ( Fax (61 8) § | WA 6872<br>(61 8) 9213 7 | 600      |                        |                            | ivel(ec                    | Fax                          |                          |                        |                          | ntainers             | Lol.     | HORM.      | Slonk    |           | 2200      |         |          |          |                   |
| Sample Control<br>Number (SCN                               | Sample<br>Location       | Sa#      | Sample<br>Depth<br>(m) | Sample<br>Matrix<br>(over) | Date<br>Sampled<br>(D/M/Y) | Time<br>Sampled<br>(HH / MM) | Sample<br>Type<br>(over) | QAQC<br>Code<br>(over) | Related<br>SCN<br>(over) | Number of Containers | Sea Alt  | #17042     | The f    |           | Abech     |         |          | RUSH     | Remarks<br>(over) |
| 101 - 01                                                    | VB4                      |          |                        | W                          | 10/7                       |                              |                          |                        |                          |                      |          | V          |          |           |           |         |          |          |                   |
| - 02                                                        | VB5                      |          |                        | W                          | (                          |                              |                          |                        |                          | a                    |          |            | 1        |           | _         | 1       |          | $\neg$   |                   |
| - 03                                                        | FO                       |          |                        | W                          |                            |                              |                          | 500                    | -02                      | a                    |          | TV.        |          |           | +         | +       | +        | $\dashv$ |                   |
| - 04                                                        | 102                      |          |                        | 1                          |                            |                              |                          | 1V                     | -02                      | a                    |          |            |          |           | +         | +       | +        | $\dashv$ |                   |
| - 05                                                        | 102                      |          |                        | W,                         |                            |                              |                          |                        |                          | a                    | $\vdash$ | V          | -        |           | -         | +       | $\vdash$ | $\dashv$ |                   |
|                                                             | VBZ                      |          |                        | W,                         |                            |                              |                          |                        |                          | d                    |          | ~          | ,        |           | +         | -       | $\perp$  | _        |                   |
| - 06                                                        | 181                      |          |                        | W                          |                            |                              |                          |                        |                          | 7                    | $\vdash$ |            | 1        | r         |           |         |          |          |                   |
| - 07                                                        | 16                       |          |                        | W                          | V                          |                              |                          |                        |                          | 1                    |          |            | V        |           |           |         |          |          |                   |
| - 08                                                        | Kec                      |          |                        | S                          |                            |                              |                          |                        |                          | 2                    |          |            |          |           |           |         |          |          |                   |
| - 09                                                        | Since I was              |          |                        | =                          | 47                         |                              |                          |                        |                          |                      |          |            |          |           | 1/2       |         | ПП       |          |                   |
| - 10                                                        |                          |          |                        |                            |                            |                              |                          |                        |                          |                      |          |            |          |           |           |         |          |          |                   |
| <b>(-11</b>                                                 |                          |          |                        |                            |                            |                              |                          |                        |                          |                      |          |            |          |           |           |         |          | $\neg$   |                   |
| - 12                                                        |                          |          |                        |                            |                            |                              |                          |                        |                          | П                    |          |            |          |           |           | +       | 1        | $\dashv$ |                   |
| mpler's Signature                                           | - OM                     |          | Relinqui               | ished by: S                | Signature                  | W                            | Compan                   | lele                   | Date 8                   | 7                    |          | Time       |          | Receiv    | ved by: S | ignatu  | re       | Com      | pany              |
| mple Storage (°C)                                           | O W                      |          | Relinqui               | ished by: S                | Signature                  | V                            | Compan                   | у                      | Date                     | 10                   |          | Time       |          | Receiv    | ved by: S | ignatu  | re       | Com      | pany              |
| omments:                                                    |                          |          | Method                 | of Shipme                  | nt:                        |                              | Waybill i                | No:                    |                          |                      | Recei    | ved for La | ıb by:   |           | Da        | ite     |          |          | Time              |
|                                                             |                          |          | Shipped                | l by:                      |                            |                              | Shipmer<br>Seal inta     | nt Condition           | n:                       |                      | Temp     | (°C) C     | ooler op | pened by: | : Da      | ite     |          |          | Time              |

| - 12                 |                            |                                    |          |             |            |            |              |     |      |
|----------------------|----------------------------|------------------------------------|----------|-------------|------------|------------|--------------|-----|------|
| Sampler's Signature: | Relinquished by: Signatur  | Company Cle                        | Date 8/7 | Time        |            | Received b | y: Signature | Com | pany |
| Sample Storage (°C)  | Relinquished by: Signature | Company                            | Date     | Time        |            | Received b | y: Signature | Com | pany |
| Comments:            | Method of Shipment:        | Waybill No:                        |          | Received fo | or Lab by: |            | Date         |     | Time |
|                      | Shipped by:                | Shipment Condition<br>Seal intact: | :        | Temp (°C)   | Cooler op  | ened by:   | Date         |     | Time |

70 1

O 00186 page of /



|                                                 |                          |          |                        |                            |                            |                              |                          |                          |                          |                      |                                       |                           |                       | <u> </u> |           |          |          | 7.100           |                   |  |  |
|-------------------------------------------------|--------------------------|----------|------------------------|----------------------------|----------------------------|------------------------------|--------------------------|--------------------------|--------------------------|----------------------|---------------------------------------|---------------------------|-----------------------|----------|-----------|----------|----------|-----------------|-------------------|--|--|
| Go                                              | lder<br>ciates           |          |                        | Proje                      | ect Number:                | 1770                         | 198                      | 4                        |                          |                      |                                       | La                        | Laboratory Name: ACS  |          |           |          |          |                 |                   |  |  |
| 1 Havelock Street                               | ciates                   |          |                        | Shor                       | t Title:                   | 0                            | 3/6                      | -00                      |                          |                      |                                       | Ac                        | Address: La the diver |          |           |          |          |                 |                   |  |  |
| West Perth, WA 600                              | 05 Australia             |          |                        | Geld                       | er Contact:                | 00                           | 17                       | Golder F                 | mail Address:            |                      |                                       | Te                        | lephone/F             |          | - d       |          |          | ntart: \        |                   |  |  |
| Telehone +61 8 921                              | 3 7600 Fax               | +61 8 92 | 213 7611               | 20                         | YOU                        | eg                           |                          |                          |                          | golder.              | com.au                                |                           |                       | ux.      |           |          |          | Shel            | C .               |  |  |
| Address where rep                               |                          | v 1      |                        | 9) 0                       | male                       | 0                            |                          |                          |                          |                      |                                       |                           |                       | ,        | Analyse   | s Requ   | uired    |                 |                   |  |  |
| PO Box 191 West Perth, Telephone ( Fax (61 8) 9 | WA 6872<br>61 8) 9213 70 | 600      | Other                  | Em                         | al Lea                     |                              |                          |                          |                          | ners                 | S S S S S S S S S S S S S S S S S S S |                           |                       |          | C110)     | \        |          |                 |                   |  |  |
|                                                 |                          |          | Phone                  |                            |                            | Fax                          | c                        |                          |                          | ontai                | Allod                                 | D.                        | 3)                    | 4        | \$0       |          |          |                 |                   |  |  |
| Sample Control<br>Number (SCN                   | Sample<br>Location       | Sa#      | Sample<br>Depth<br>(m) | Sample<br>Matrix<br>(over) | Date<br>Sampled<br>(D/M/Y) | Time<br>Sampled<br>(HH / MM) | Sample<br>Type<br>(over) | Code<br>(over)           | Related<br>SCN<br>(over) | Number of Containers | See A                                 | 1 - L                     | S. S. S.              | F. C. B. | 6tex T    |          |          | RUSH            | Remarks<br>(over) |  |  |
| Dcv/86-01                                       | FT                       |          |                        | W                          | 10/7                       |                              |                          | Qool                     | 206                      | 11                   |                                       | 7                         | J                     | <b>(</b> |           | $\neg$   | $\dashv$ | $\dashv$        |                   |  |  |
| - 02                                            | TB                       |          |                        | 14                         | 16/7                       |                              |                          | TB                       |                          |                      | П                                     |                           |                       |          | V         |          |          |                 |                   |  |  |
| 03                                              | 7                        | 1        |                        |                            |                            |                              |                          |                          |                          |                      |                                       |                           |                       |          |           | $\neg$   |          |                 |                   |  |  |
| - 04                                            |                          |          |                        |                            |                            |                              |                          |                          |                          |                      |                                       |                           |                       |          |           | 7        | $\dashv$ | $\dashv$        |                   |  |  |
| - 05                                            |                          |          |                        |                            |                            |                              |                          |                          |                          |                      |                                       | $\dashv$                  |                       |          |           | _        | $\dashv$ | $\top$          |                   |  |  |
| - 0,6                                           |                          |          |                        |                            |                            |                              |                          |                          |                          |                      | П                                     | $\dashv$                  |                       |          |           | _        | $\neg$   | $\dashv$        |                   |  |  |
| -/07                                            |                          |          |                        |                            |                            |                              |                          |                          |                          |                      |                                       | T                         |                       |          |           | 7        | $\neg$   | $\dashv \dashv$ |                   |  |  |
| /- 08                                           |                          |          |                        |                            |                            |                              |                          |                          |                          |                      |                                       |                           |                       |          |           | _        | _        | +               |                   |  |  |
| - 09                                            | ,                        |          |                        |                            | Total Control              |                              |                          |                          |                          |                      | H                                     | $\neg$                    |                       |          |           | $\neg$   | -        | $\dashv$        |                   |  |  |
| - 10                                            |                          |          |                        |                            |                            |                              |                          |                          |                          |                      | H                                     | $\dashv$                  |                       | $\vdash$ |           | _        | _        | +               |                   |  |  |
| - 11                                            |                          |          |                        |                            |                            |                              |                          |                          |                          |                      | H                                     | $\dashv$                  |                       |          |           |          | -        | +               |                   |  |  |
| - 12                                            |                          |          |                        |                            |                            |                              |                          | -                        |                          |                      | H                                     | $\dashv$                  |                       |          |           | -        | _        | +               |                   |  |  |
| Sampler's Signature:                            | 20                       | 4        | Relingu                | ished by: S                | lionature -                | 4                            | Comp                     | W 1 A                    | Date (8                  | 1-1                  |                                       | Time                      |                       | Pac      | noised b  | ua Cian  |          |                 |                   |  |  |
|                                                 | Ly                       |          |                        |                            | 2                          | al                           | 100                      | JO ON                    | Date 0                   | 11                   |                                       | Tille                     |                       | I Nec    | ceived b  | iy. Sigi | ature    | Com             | npany             |  |  |
| Sample Storage (°C)                             | 0                        |          | Relinqu                | ished by: S                | ignature                   | N.                           | Compar                   | ny                       | Date                     |                      |                                       | Time                      |                       | Red      | ceived b  | y: Sigr  | ature    | Com             | npany             |  |  |
| Comments: Method of Shipment:                   |                          |          |                        |                            |                            |                              | Waybill No: Received     |                          |                          |                      | eived for Lab by:                     |                           |                       |          | Date      |          |          | Time            |                   |  |  |
|                                                 | Shipped by:              |          |                        |                            |                            |                              |                          | Shipment Condition: Temp |                          |                      |                                       | mp (°C) Cooler opened by: |                       |          | Date Time |          |          |                 |                   |  |  |

Q 00186 page of /

| Golder<br>Associates                               | Project Number: 177                       | 9954                                |                      | Laboratory Nam                                   | e: ACS                 |                               |
|----------------------------------------------------|-------------------------------------------|-------------------------------------|----------------------|--------------------------------------------------|------------------------|-------------------------------|
| 1 Havelock Street West Perth, WA 6005 Australia    |                                           |                                     |                      | Address:                                         | Hellow                 | <b>)</b>                      |
| Telehone +61 8 9213 7600 Fax +61 8 9213            | 7611 Solder Contact:                      | Golder Email Address:<br>@go        | older.com.au         | Telephone/Fax:                                   |                        | Contact:                      |
| West Perth, WA 6872                                | ther Clark                                |                                     |                      |                                                  | Analyses Required      |                               |
| Telephone (61 8) 9213 7600<br>Fax (61 8) 9213 7611 | - Neil                                    |                                     | Iners                |                                                  | [ [ [ ]                |                               |
| Př                                                 | hone Fax                                  | <u> </u>                            | of Contain           | 7 2 -                                            | <b>香椒</b>              |                               |
| Sample Control<br>Number (SCN                      | Sample Date Matrix Sampled (over) (D/M/Y) |                                     | Number of Containers |                                                  |                        | H Remarks (over)              |
| Devi86-01                                          | WINT                                      |                                     |                      | 1                                                |                        |                               |
| - 02                                               | WINT                                      |                                     | 1                    |                                                  | <b>V</b>               |                               |
| 03-                                                |                                           |                                     |                      |                                                  |                        |                               |
| - 04                                               |                                           |                                     |                      |                                                  |                        | Environmental Division        |
| - 05                                               |                                           |                                     |                      |                                                  |                        | Perth<br>Work Order Reference |
| - 06                                               |                                           | _                                   |                      |                                                  |                        | EP1707310                     |
| -/07                                               |                                           |                                     |                      |                                                  |                        |                               |
| /- 08<br>/ - 09                                    |                                           | 2                                   | a .                  | <del>                                     </del> |                        |                               |
| / - 10                                             |                                           |                                     |                      |                                                  |                        |                               |
| - 11                                               |                                           | _                                   |                      |                                                  |                        | °elephone : ± 61-8-9209 7655  |
| - 12                                               |                                           |                                     |                      |                                                  |                        |                               |
|                                                    | Relinquished by: Signature                | Company Date                        | 7 1                  | ime F                                            | Received by: Signature | Company                       |
| le Storage (°C)                                    | Relinquished by Signature                 | Company Date /O                     |                      |                                                  | Received by: Stgmature |                               |
| nts:                                               | Method of Shipment:                       | Waybill No:                         | Receive              | ed for Lab by:                                   | Date                   | Time                          |
| S                                                  | Shipped by:                               | Shipment Condition:<br>Seal intact: | Temp ('              | °C) Cooler open                                  | ed by: Date            | Time                          |

# **ATTACHMENT 3**

# **Groundwater Sample Analysis Parameters**

| Parameter                                           |
|-----------------------------------------------------|
| pH                                                  |
| Electrical conductivity                             |
| Total nitrogen as N                                 |
| Total kjeldahl nitrogen as N                        |
| Ammonia (NH <sub>3</sub> )                          |
| Nitrate (NO <sub>3</sub> )                          |
| Nitrite (NO <sub>2</sub> )                          |
| Nitrate + Nitrite as N                              |
| Total phosphorus                                    |
| Reactive phosphorus                                 |
| Total dissolved solids                              |
| hardness                                            |
| Total organic carbon                                |
| Biochemical oxygen demand                           |
| Chemical oxygen demand                              |
| Alkalinity                                          |
| Major cations / anions                              |
| Arsenic (dissolved)                                 |
| Cadmium (dissolved)                                 |
| Chromium (dissolved)                                |
| Copper (dissolved)                                  |
| Lead (dissolved)                                    |
| Nickel (dissolved)                                  |
| Zinc (dissolved)                                    |
| Mercury (dissolved)                                 |
| Iron (dissolved)                                    |
| Aluminium (dissolved)                               |
| Calcium (dissolved)                                 |
| I otal recoverable hydrocarbons (NEDM frootions)    |
| Total recoverable hydrocarbons (silica gel cleanup) |
| Benzene                                             |
| Toluene                                             |
| Ethylbenzene                                        |
| Xylenes                                             |
| Phenols                                             |
| Polycyclic aromatic hydrocarbons                    |
| Polycyclic aromatic hydrocarbons PFAS <sup>1</sup>  |
|                                                     |

As per the minimum requirements set out in Table 3 (page 10) of Interim Guideline on the Assessment and Management of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) (DER, 2017)



# **APPENDIX E**

**Groundwater Sampling Sheets** 



#### **GROUNDWATER SAMPLING RECORD FORM** Golder PROJECT INFORMATION Project Number: Sampled By: Client: Site Location: **GROUNDWATER WELL DATA** BORE ID Information recorded on site Information from file Diameter of standpipe (mm) Standpipe stick up (m) Surveyed reference point 1245 Time Depth of well (from log) Interface probe used? Standard flow rate (L/min) N Depth to product (mbRP) Depth of pump intake (mbRP) Depth to water (mbRP) 2.884 Length of hose (m) Thickness of product (interface probe) (m) Volume in hose (L) 5.375 Total depth of well (mbRP) Note: Standard reference point is top of PVC standpipe Bailed Thickness (m) mbRP - metres below top of reference point Hose volume - 0.1 L/m of 12mm internal diameter hose Hose volume - 0.05 L/m of 8mm internal diameter hose Hose volume - 0.03 L/m of 6.35mm internal diameter hose New ndition: **EQUIPMENT RECORD**

| Time             | Volume Purged<br>(L) | Conductivity<br>(uS/cm) | Temp (°C) | рН    | Redox<br>Potential<br>(mV) | Dissolved<br>Oxygen (ppm) | Depth to Water (mbRP) | Dṛawdown (m) | Appearance (colour, turbidity, odour, etc) |
|------------------|----------------------|-------------------------|-----------|-------|----------------------------|---------------------------|-----------------------|--------------|--------------------------------------------|
| Stabilisation Ra | nge                  | ± 5%                    | ± 0.5 °C  | ± 0.1 | ± 10 mV                    | ± 10%                     |                       |              |                                            |
| 12.50            |                      | 435-8                   | 19.2      | 4.70  | ~13.                       | 096                       | 2.884                 |              | Bosus.                                     |
| 17-55            |                      | 3986                    | 183       | 4.21  | -38 6                      | 0.25                      |                       |              | born                                       |
| 1300             |                      | 402.9                   | 18.3      | 4.16  | -48-6                      | 0.23                      | 2.884                 | -            | file Bour.                                 |
| 1305             | DE LESSON            | 404.8                   | 18.3      | 4.15  | -50.2                      | 0.24                      | Li Li                 |              | 4 11                                       |
| 1310             |                      | 404 3                   | 18.3      | 4-13  | -51-3                      | 0.52                      | u u                   |              | 4 4                                        |
|                  |                      |                         |           |       |                            |                           |                       |              | ELETS VELVAS                               |
|                  |                      |                         |           |       |                            |                           |                       |              |                                            |
|                  |                      |                         |           | Flow  | Rate (mL/min)              | 17512                     |                       |              |                                            |

Calibrated by:

Purging & Sampling Method:

**PURGING RECORD** 

WQM Model:

Peristaltic Pump

(Hire)

|                         | Flow Rate (mL/i                                         | min)                  |                     |                              |
|-------------------------|---------------------------------------------------------|-----------------------|---------------------|------------------------------|
|                         |                                                         |                       |                     |                              |
|                         |                                                         |                       |                     |                              |
|                         |                                                         |                       |                     | and the second second second |
| WPLING RECORD           |                                                         |                       | THE PERSON NAMED IN |                              |
| e sampled: 12-10        |                                                         | Sample ID.            | 155-06              |                              |
| ple Appearance:         | Duplicate sam:                                          | ole taken? / Dup ID.: | ol.cd               | 10-281010                    |
| Colour Call Son         |                                                         | Turbidity:            | puere               | 000,000                      |
| Odour                   | Hydrocar                                                | bon sheen/LNAPL?:     |                     |                              |
|                         | (F = Filtered, UNF = Unfiltered, P = Preserved, UP = Ur |                       |                     | _                            |
| 2 Vials (UP)            | Metals (F) UP)                                          | 0.125L Plastic        | _                   |                              |
| 1L Amber                | COD/NH3/Phenols (F/UNF) (P/UP)                          | 7 0.5L Plastic        | $\Omega_{c}$        | (9/)                         |
| 7 0.1L Amber            | Cyanide (P)                                             | Ferrous (F) (P)       | 140181              |                              |
|                         |                                                         |                       | 1. 0 10 1           |                              |
| SERVATIONS              |                                                         |                       |                     |                              |
| Weather Conditions: Ter | mperature:                                              | Precipitation :       |                     |                              |
| Notes:                  | inperature.                                             | i redipitation .      |                     |                              |
| Hotes.                  |                                                         |                       |                     |                              |
|                         |                                                         |                       |                     |                              |
|                         |                                                         |                       |                     | ;                            |

Serial Number SK 1003 25

|                                                            |                                                           |                      |                                                 |                 |                                       |                                              |                                 |                   | Golder<br>Associates                      |
|------------------------------------------------------------|-----------------------------------------------------------|----------------------|-------------------------------------------------|-----------------|---------------------------------------|----------------------------------------------|---------------------------------|-------------------|-------------------------------------------|
| PROJECT INF                                                | ORMATION                                                  |                      |                                                 |                 |                                       |                                              |                                 | 1                 | Tiobocanco                                |
|                                                            | Project Number:                                           | 17799                | 54                                              |                 |                                       |                                              | Date:                           | 10/7/             | 14-11                                     |
|                                                            | Client:                                                   |                      | DER                                             |                 |                                       |                                              | Sampled By:                     | , 1 ,1            | 1 90                                      |
|                                                            | Site Location:                                            |                      | cakt                                            | 0               |                                       |                                              |                                 |                   |                                           |
| ROUNDWAT                                                   | TER WELL DAT                                              | A                    |                                                 |                 |                                       |                                              |                                 |                   |                                           |
|                                                            | orded on site                                             |                      |                                                 |                 |                                       |                                              | BORE ID                         | VIA2              |                                           |
| iameter of star                                            |                                                           |                      | 50                                              | )               | 1                                     | Information fi                               |                                 | ANCE              |                                           |
| tandpipe stick                                             |                                                           |                      | -                                               |                 |                                       | Surveyed refer                               |                                 |                   | NON THE COLUMN                            |
| ime                                                        |                                                           |                      | 12.10                                           |                 | 1                                     | Depth of well (                              | from log)                       |                   |                                           |
| terface probe                                              | used?                                                     |                      | N                                               |                 |                                       | Standard flow                                |                                 |                   |                                           |
| epth to produc                                             | t (mbRP)                                                  |                      | -                                               |                 |                                       | Depth of pump                                | intake (mbRP)                   |                   |                                           |
| epth to water (                                            | mbRP)                                                     |                      | 2 627                                           |                 |                                       | Length of hose                               | e (m)                           |                   |                                           |
| ickness of pro                                             | oduct (interface pro                                      | obe) (m)             | -                                               |                 |                                       | Volume in hos                                | e (L)                           | = 1.51            |                                           |
| otal depth of w                                            | ell (mbRP)                                                |                      | 5.0                                             | +1              | Note:                                 | ***************************************      | ence point is top of PVC st     | andpipe           |                                           |
| ailed Thicknes                                             | s (m)                                                     |                      | -                                               |                 |                                       |                                              | s below top of reference po     |                   |                                           |
|                                                            |                                                           |                      |                                                 |                 |                                       | Hose volume -                                | 0.1 L/m of 12mm internal        | diameter hose     |                                           |
|                                                            |                                                           | -                    |                                                 |                 |                                       | Hose volume -                                | 0.05 L/m of 8mm internal        | diameter hose     |                                           |
|                                                            |                                                           |                      | 1                                               |                 |                                       | Hose volume -                                | 0.03 L/m of 6.35mm interr       | nal diameter hose | •                                         |
| ndition:                                                   |                                                           | Q                    | 50 / New                                        |                 |                                       | ]                                            | aline.                          |                   |                                           |
| QUIPMENT I                                                 | DECODE                                                    |                      | 1.                                              |                 |                                       |                                              |                                 |                   |                                           |
|                                                            |                                                           | D-1-1-18- D          |                                                 | 1               |                                       |                                              |                                 |                   |                                           |
| urging & Samp                                              | ing Method:                                               | Peristaltic Pump     | 44.                                             |                 |                                       | 0-25                                         | OH-                             |                   | Serial Number BK 16032                    |
| 'QM Model:<br>URGING RE                                    |                                                           |                      | (Hire)                                          |                 |                                       | Calibrated by:                               | 94                              | -                 | serial Number   5 K W 32                  |
| Time<br>abilisation Rai                                    | Volume Purged (L)                                         | Conductivity (uS/cm) | Temp (°C) ± 0.5 °C                              | pH<br>± 0.1     | Redox<br>Potential<br>(mV)<br>± 10 mV | Dissolved<br>Oxygen (ppm)<br>± 10%           | Depth to Water (mbRP)           | Drawdown (m)      | Appearance (colour turbidity, odour, etc) |
| 2.15                                                       |                                                           | 860                  | 20.2                                            | 5.27            | -29.0                                 | 0.19                                         | 2.622                           |                   | the Baralonne led                         |
| 2.20                                                       |                                                           | 891                  | 20.4                                            | 5.09            | -29.2                                 | 0.19                                         | -11 11                          | -                 | Pde Born.                                 |
| 2 25                                                       |                                                           | 904                  | 20 2                                            | 5 07            | - 29.6                                | 0.22                                         | 10 11                           | _                 | 4 4                                       |
| 2.30                                                       | 2 EI                                                      | 912                  | 20 -1                                           | 5.06            | 307                                   | 0 24                                         | 11 11                           |                   | ie le                                     |
| 2.35                                                       |                                                           | 911                  | 20 1                                            | 5.00            | -31.4                                 | 0.24                                         | ie le                           |                   | LU                                        |
|                                                            |                                                           | EDVIN C              | ·                                               |                 |                                       |                                              |                                 |                   |                                           |
|                                                            |                                                           |                      | FISIS                                           | 1               |                                       | Mark 1                                       | PER BERLIN                      |                   |                                           |
| ME "                                                       |                                                           | THE BETT             |                                                 | 3 1 1 2         |                                       |                                              |                                 |                   |                                           |
|                                                            |                                                           |                      |                                                 |                 |                                       |                                              |                                 |                   |                                           |
|                                                            |                                                           |                      |                                                 | Flow            | Rate (mL/min)                         | 2000                                         |                                 |                   |                                           |
| AMPLING RE                                                 | 12                                                        | 7.35<br>oran 19      |                                                 | Duj             | •                                     | Sample ID.<br>aken? / Dup ID.:<br>Turbidity: | lew !                           | 62-03             | <b>&gt;</b>                               |
| ample Appears<br>Colour                                    | Pole                                                      |                      |                                                 | ]               |                                       | sheen/LNAPL?:                                | Non.                            |                   |                                           |
| ample Appears<br>Colour<br>Odour                           | Pole                                                      | -110                 | 1 (16.00) (1.00)                                |                 | act IIII - Honros                     | servea)                                      |                                 |                   |                                           |
| Odour<br>ample Contair                                     | ner and Preservat                                         | tion: (F = Filtere   |                                                 | d, P = Preserve | ed, or - onpres                       | 1                                            | 0.125L Plastic                  |                   | ~                                         |
| ample Appeara<br>Colour<br>Odour<br>ample Contain          | ner and Preservat<br>Vials (UP)                           | tion: (F = Filtere   | Metals (F) (UP)                                 |                 |                                       | 7                                            | 0.125L Plastic<br>0.5L Plastic  | 0.                | (a)                                       |
| Colour<br>Odour<br>Odour<br>ample Contain                  | ner and Preservat                                         | tion: (F = Filtere   |                                                 |                 |                                       | 1                                            |                                 | GAS1              | (9)                                       |
| ample Appears<br>Colour<br>Odour<br>ample Contain          | ner and Preservat<br>Vials (UP)<br>1L Amber<br>0.1L Amber | tion: (F = Filtere   | Metals (F) (UP)<br>COD/NH3/Pheno                |                 |                                       | 2                                            | 0.5L Plastic                    | FASI              | 9                                         |
| ample Appears Colour Odour Odour ample Contain 2 BSERVATIO | ner and Preservat<br>Vials (UP)<br>1L Amber<br>0.1L Amber | tion: (F = Filtere   | Metals (F) (UP)<br>COD/NH3/Pheno<br>Cyanide (P) |                 |                                       | Precipitation :                              | 0.5L Plastic<br>Ferrous (F) (P) | FASI              | <b>1</b>                                  |

| GROUNDW                 | ATER SAMIFE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NO RECORD I        | OKW.           |                     |                   |                 |                                 |                     |                | Golder                |          |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|---------------------|-------------------|-----------------|---------------------------------|---------------------|----------------|-----------------------|----------|
| PROJECT IN              | FORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | J. 25 C. A     |                     | 7-21-5            |                 |                                 | 1                   | U A            | ssociates             |          |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                 | 995LL          |                     |                   |                 |                                 | Paul 16             | 7              |                       |          |
|                         | Project Number:<br>Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                |                     | _                 |                 | Sample                          | Date:               | MAN            |                       |          |
|                         | Site Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                 | ogh(           | 5                   |                   |                 | e di libra                      |                     |                |                       |          |
| GROUNDWA                | TER WELL DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TA .               |                |                     | , pre-            |                 |                                 | 110                 | 77             |                       |          |
| Information re          | corded on site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                |                     |                   |                 | BORE ID                         | V                   | 55             |                       |          |
| Diameter of sta         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 500            | non                 |                   | Information     | from file                       |                     |                |                       |          |
| Standpipe stick         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |                     |                   | Surveyed refe   | erence point                    |                     | NEW THEORY     |                       |          |
| Time                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 11.32          |                     |                   | Depth of well   | (from log)                      |                     |                |                       |          |
| Interface probe         | used?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | dis            |                     |                   | Standard flow   | rate (L/min)                    |                     |                |                       |          |
| Depth to produ          | ct (mbRP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | Section 1      |                     |                   | Depth of pum    | p intake (mbRP)                 |                     | - 6.6          |                       | 7        |
| Depth to water          | (mbRP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | A PROPERTY     | 62.8                | 16                | Length of hos   | e (m)                           | TAILS.              | 14.5           | • TT R - 115          | 118      |
| Thickness of pr         | roduct (interface p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | robe) (m)          | -              |                     |                   | Volume in hos   | se (L)                          |                     |                |                       |          |
| Total depth of v        | well (mbRP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | 3              | .38                 | Note              | : Standard refe | rence point is top of I         | PVC standpipe       |                |                       |          |
| Bailed Thicknes         | ss (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | -              |                     |                   | mbRP - metre    | es below top of refere          | nce point           |                |                       |          |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |                     | -                 | Hose volume     | - 0.1 L/m of 12mm in            | ternal diameter hos | se             |                       |          |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |                     |                   | Hose volume     | - 0.05 L/m of 8mm in            | ternal diameter hos | se             |                       |          |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                  | 1/1/           |                     |                   | Hose volume     | - 0.03 L/m of 6.35mn            | n internal diameter | hose           |                       |          |
| G andition              | 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                 | wood New       |                     | 1 - 1 - 1 - 1     |                 |                                 |                     |                |                       |          |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | - 1            | D SIGNATUR          |                   |                 |                                 |                     |                |                       |          |
| EQUIPMENT               | A CONTRACTOR OF THE PROPERTY O | ELS. (1.50 N)      |                | 1                   |                   |                 |                                 |                     |                |                       |          |
| Purging & Sam           | pling Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Peristaltic Pump   |                | -                   |                   |                 | all                             | -                   |                |                       | 750      |
| WQM Model:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | (Hire)         | Į.                  |                   | Calibrated by:  | SA                              |                     | Serial Nu      | mber 156100           | 3520     |
| PURGING RE              | CORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                |                     |                   |                 |                                 |                     |                |                       |          |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |                     |                   |                 |                                 |                     |                |                       |          |
| Time                    | Volume Purged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Conductivity       | T (80)         | pН                  | Redox             | Dissolved       | T                               |                     |                |                       |          |
| rine                    | (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (uS/cm)            | Temp (°C)      | рп                  | Potential<br>(mV) | Oxygen (ppm     | Depth to Water (m               | bRP) Drawdown       | (m) Appearance | urbidity, odour, etc) | (colour, |
| Stabilisation Ra        | ange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ± 5%               | ± 0.5 °C       | ± 0.1               | ± 10 mV           | ± 10%           |                                 |                     | 0.0            |                       |          |
| 11.35                   | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 786                | 18.8           | 5.4Z                | -71.3             | 316             | 2.816                           | -                   | the Ba         | Des lossy             | 1        |
| 11.40                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 826                | 19.5           | 563                 | -13.6             | 2-32            | 2-8                             | 16                  | 44             | 4                     |          |
| 11.45                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 829                | 19.6           | 5.74                | 418               | 2.05            | 1 0                             | -                   | fs             | 46                    | 4 11     |
| 11.50                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 826                | 19.5           | 5.77                | -32.8             | 2.07            | 11 15                           | -                   | M              | Li                    |          |
| 11.55                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 824                | 19.5           | 5.76                | -30.1             | 2.04            | in t                            |                     | - le           | U                     |          |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |                     |                   | -               |                                 |                     |                |                       |          |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                | 0.818.5             |                   | 115             | 255                             |                     |                |                       |          |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |                     |                   |                 |                                 |                     | serval in the  |                       |          |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |                     |                   |                 |                                 |                     |                |                       |          |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                | Flov                | v Rate (mL/min    | 200             |                                 |                     |                | N. V. C. Lindson      |          |
| v                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |                     |                   |                 |                                 |                     |                |                       |          |
| (                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |                     |                   |                 |                                 |                     |                |                       |          |
| SAMPLING R              | ECOPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                |                     |                   |                 | The T                           |                     |                |                       |          |
| JAMI ENTO IX            | LOOKD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                 | 1              |                     |                   |                 | -                               | 000                 |                |                       |          |
| Time sampled:           | - 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .22                | 1              | ъ.                  | plicate sample (  | Sample ID       |                                 | 182-1               | 24             |                       |          |
| Sample Appear<br>Colour | 8 7 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BO. 1 /2           | 20.1           | 1                   | iplicate sample i | Turbidity       |                                 |                     | -              |                       |          |
| Odour                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dian Jose          | rg.            | 1                   | Hydrocarbon       | sheen/LNAPL?    |                                 | (Si                 | ELE.           |                       |          |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion: (F = Filtere |                | -<br>d, P = Preserv |                   |                 |                                 |                     |                |                       |          |
| 2                       | Vials (UP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                  | Metals(F)(UP)  |                     |                   | 1               | 0.125L Plastic                  | OFILE . I           |                | <b>a</b>              |          |
| -                       | 1L Amber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.40               | COD/NH3/Phenol | s (F/UNF) (P/       | UP)               | 2               | 0.5L Plastic<br>Ferrous (F) (P) | 14A3 × 1            | . (            | P')                   |          |
| 2                       | 0.1L Amber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | Cyanide (P)    |                     |                   |                 | _ 1 611003 (F) (F)              |                     |                | ·/                    |          |
| OBSERVATIO              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |                     |                   | no die          |                                 |                     |                |                       |          |
| Wea<br>Notes:           | ther Conditions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Temperature:       |                |                     |                   | Precipitation   |                                 |                     |                |                       |          |
| MOTER:                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |                     |                   |                 |                                 |                     |                |                       |          |

|                                                         |                                                           |                      |                                                 |         |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Golder<br>Associates   |
|---------------------------------------------------------|-----------------------------------------------------------|----------------------|-------------------------------------------------|---------|--------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------|
|                                                         | FORMATION  Project Number: Client: Site Location:         | Dale                 | akfod                                           |         |                    |                           | Date:<br>Sampled By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/11          | A MA                   |
| ROUNDWA                                                 | TER WELL DAT                                              |                      |                                                 |         |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L. ET          |                        |
|                                                         |                                                           |                      |                                                 |         |                    |                           | BORE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VBIE           |                        |
|                                                         | corded on site                                            |                      | 50                                              |         | 7                  | Information fro           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100            |                        |
| iameter of star<br>tandpipe stick                       |                                                           |                      | 30                                              |         | 1                  | Surveyed refere           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |
| me                                                      |                                                           |                      | an                                              | FILE OF |                    | Depth of well (f          | rom log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                        |
| terface probe                                           | used?                                                     |                      | N                                               |         |                    | Standard flow r           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |
| epth to produc                                          |                                                           |                      | NIA                                             |         |                    | Depth of pump             | intake (mbRP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                        |
| epth to water (                                         | (mbRP)                                                    |                      | 2.25                                            | 7       |                    | Length of hose            | (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                        |
| nickness of pro                                         | oduct (interface pr                                       | robe) (m)            |                                                 |         |                    | Volume in hose            | (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77277          |                        |
| otal depth of w                                         | vell (mbRP)                                               |                      | 5:10                                            |         | Note:              | Standard refere           | ence point is top of PVC st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | andpipe        |                        |
| andition                                                | ı:                                                        | Ne                   | w/ 400d                                         |         |                    | Hose volume -             | 0.1 L/m of 12mm internal on 0.05 L/m of 8mm internal on 0.03 L/m of 6.35mm internal on 0.03 L | diameter hose  | 9                      |
| QUIPMENT                                                | RECORD                                                    |                      |                                                 | 100     |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |
| urging & Samp                                           | pling Method:                                             | Peristaltic Pump     |                                                 |         |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |
| QM Model:                                               |                                                           |                      | (Hire)                                          |         |                    | Calibrated by:            | unt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | Serial Number 45K1003Z |
| URGING RE                                               | CORD                                                      |                      |                                                 |         |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |
| Time                                                    | Volume Purged (L)                                         | Conductivity (uS/cm) | Temp (°C)                                       | рН      | Redox<br>Potential | Dissolved<br>Oxygen (ppm) | Depth to Water (mbRP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Drawdown (m)   | Appearance (colou      |
| tabilisation Ra                                         | l<br>nge                                                  | ± 5%                 | ± 0.5 °C                                        | ± 0.1   | (mV)<br>± 10 mV    | ± 10%                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | turbidity, odour, etc) |
| 0910                                                    |                                                           | 1372                 | 17-6                                            | 6.00    | 42-6               | 0.40                      | 20257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | Pele Brus.             |
| 9.15                                                    |                                                           | 1385                 | 18-7                                            | 5 87    | 26.9               | 0.18                      | 2 757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | Poli Bour              |
| .20                                                     |                                                           | 1330                 | 19 2                                            | 5.82    | -48.7              | 0.28                      | 2.257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | Pde Boun LT.           |
| 1.25                                                    | Canada                                                    | 1306                 | 19.3                                            | 5.87    | -154.9             | 0.30                      | 7.257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                        |
| 1.30                                                    |                                                           | 1300                 | 19-2                                            | 5.87    | -157-9             | 0.31                      | 7.257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                        |
|                                                         |                                                           |                      |                                                 |         |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |
|                                                         |                                                           |                      |                                                 |         |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |
|                                                         |                                                           | = 104                | E = 4     =                                     | T-T-    |                    |                           | WITTER STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                        |
| 1-1-1                                                   | 1 1 1 1 1 1 1 1 1                                         |                      | 1 - 5 - 1                                       |         | E. E. D.           | •                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |
|                                                         |                                                           |                      |                                                 | Flov    | v Rate (mL/min)    | 200                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |
| AMPLING RI                                              |                                                           | <del>930</del>       |                                                 | Du      | plicate sample to  | Turbidity:                | Tan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -01            |                        |
| ample Appears<br>Colour<br>Odour<br>ample Contai        | iner and Preserva Vials (UP)                              | ation: (F = Filtere  | d, UNF = Unfiltere Metals (F) (UP)              |         |                    | erved)                    | 0.125L Plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | O <sub>2</sub> |                        |
| Colour<br>Odour<br>ample Contai                         | iner and Preserva                                         | ation: (F = Filtere  |                                                 |         | ed, UP = Unpres    | erved)                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLAS           | ×) (1)                 |
| Colour<br>Odour<br>ample Contai                         | iner and Preserva<br>Vials (UP)<br>1L Amber<br>0.1L Amber | ation: (F = Filtere  | Metals (F) (UP)<br>COD/NH3/Pheno                |         | ed, UP = Unpres    | erved)                    | 0.125L Plastic<br>0.5L Plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PEAS           |                        |
| Colour<br>Odour<br>ample Contain<br>2<br>2<br>BSERVATIO | iner and Preserva<br>Vials (UP)<br>1L Amber<br>0.1L Amber |                      | Metals (F) (UP)<br>COD/NH3/Pheno<br>Cyanide (P) |         | ed, UP = Unpres    | erved)                    | 0.125L Plastic<br>0.5L Plastic<br>Ferrous (F) (P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PLAS           |                        |



|                    |                                              |                      |                                                                 |         |                            |                                |                                                                                                                |                                | Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------|----------------------------------------------|----------------------|-----------------------------------------------------------------|---------|----------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJECT IN         | IFORMATION                                   |                      |                                                                 |         |                            |                                |                                                                                                                | THE REAL PROPERTY.             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Project Number:<br>Client:<br>Site Location: | DEK                  | Oakfu                                                           | ال      |                            |                                | Date:<br>Sampled By:                                                                                           | 10/7/1                         | 7 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GROUNDWA           | TER WELL DAT                                 | Ά                    |                                                                 |         |                            |                                |                                                                                                                | VIT                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Information re     | ecorded on site                              |                      |                                                                 |         |                            |                                | BORE ID                                                                                                        | VS                             | Control of the state of the sta |
| Diameter of sta    |                                              |                      | So                                                              |         |                            | Information fr                 | om file                                                                                                        |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Standpipe stick    |                                              |                      |                                                                 |         |                            | Surveyed refer                 | ence point                                                                                                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time               |                                              |                      | 10-16                                                           |         |                            | Depth of well (1               |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Interface probe    | e used?                                      |                      | 2                                                               |         |                            | Standard flow                  |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Depth to produ     |                                              |                      |                                                                 |         |                            | Depth of pump                  |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Depth to water     |                                              |                      | 2 1207                                                          |         | 1                          | Length of hose                 | 7320                                                                                                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | roduct (interface pr                         | robe) (m)            | -                                                               |         | -                          | Volume in hose                 |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total depth of     | well (mbRP)                                  |                      | 5.                                                              | 6>      | Note:                      |                                | ence point is top of PVC st                                                                                    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bailed Thickne     |                                              | G                    | w/New                                                           | (n)     |                            | Hose volume -<br>Hose volume - | below top of reference po<br>0.1 L/m of 12mm internal<br>0.05 L/m of 8mm internal<br>0.03 L/m of 6.35mm intern | diameter hose<br>diameter hose | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EQUIPMENT          | RECORD                                       |                      |                                                                 |         | 0.00                       |                                |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | npling Method:                               | Peristaltic Pump     | F F1 1 7/2                                                      | 1       |                            |                                | . 41                                                                                                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WQM Model:         |                                              |                      | (Hire)                                                          | 1       |                            | Calibrated by:                 | 0/11/                                                                                                          |                                | Serial Number ISIO 00328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PURGING RI         | ECOPD                                        |                      | (1)                                                             |         |                            |                                | 1                                                                                                              |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time               | Volume Purged<br>(L)                         | Conductivity (uS/cm) | Temp (°C)                                                       | pН      | Redox<br>Potential<br>(mV) | Dissolved<br>Oxygen (ppm)      | Depth to Water (mbRP)                                                                                          | Drawdown (m)                   | Appearance (colour, turbidity, odour, etc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Stabilisation R    | ange                                         | ± 5%                 | ± 0.5 °C                                                        | ± 0.1   | ± 10 mV                    | ± 10%                          |                                                                                                                |                                | larbidity, oddar, etcy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10.24              |                                              | 757                  | 15.2                                                            | 5.44    | -138.8                     | 0.38                           | 2.207                                                                                                          | -                              | Pale Born, While.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10-29              |                                              | 732                  | 14 3                                                            | 5.31    | -145.9                     | 0.28                           | 2.207                                                                                                          | _                              | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10 34              |                                              | 728                  | 18.3                                                            | 5.26    | -148.6                     | 0.25                           | 2 201                                                                                                          |                                | £1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1040               |                                              | 720                  | 18.2                                                            | 5.24    | - 154.8                    | 8.22                           | 2 207                                                                                                          | _                              | T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10 45              |                                              | 715                  | 15.2                                                            | 523     | -158.6                     | 0.52                           | 2- 207                                                                                                         |                                | N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    |                                              |                      |                                                                 |         |                            |                                |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                              |                      |                                                                 | Flov    | v Rate (mL/min)            |                                | 200ml.                                                                                                         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C                  |                                              |                      |                                                                 |         |                            |                                |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAMPLING F         | RECORD                                       | DE LINES             |                                                                 |         |                            |                                |                                                                                                                | 31 1                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time sampled:      | 16                                           | 145.                 | 1                                                               |         |                            | Sample ID.                     | CANS.                                                                                                          | 02                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Appea       | rance:                                       | Brus                 |                                                                 | Du<br>] | iplicate sample to         |                                | Jul                                                                                                            |                                | Octal 15-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Odou               |                                              |                      | A LINE AL AL                                                    |         |                            | sheen/LNAPL?:                  | -                                                                                                              |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Conta       | vials (UP) 1L Amber 0.1L Amber               | ation: (F = Filtere  | ed, UNF = Unfiltered Metals (F) (UP) COD/NH3/Phenol Cyanide (P) |         |                            | erved)                         | 0.125L Plastic<br>0.5L Plastic<br>Ferrous (F) (P)                                                              | CAS X                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| OBSERVATI          | and the second of                            |                      |                                                                 |         |                            |                                |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Line on the second | eather Conditions:                           | Tomperature          |                                                                 |         |                            | Precipitation :                |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| vve                | auter Conditions:                            | Temperature          |                                                                 |         |                            | i recipitation.                |                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



# **APPENDIX F**

**Laboratory Analytical Reports** 



Q 13077 page\_of\_



1 Havelock Street

| Project Number: 17799           | 54                                          | Laboratory Name:        | TION U           |
|---------------------------------|---------------------------------------------|-------------------------|------------------|
| <b>10.15 中</b>                  |                                             | Address: 91 Lac         | ich Hur leendale |
| Golder Contact:<br>Sarah Garvey | Golder Email Address: Suable @golder.com.au | Telephone/Fax: 92519600 | Contact:         |

| West Perth, WA 6005 Australia Telehone +61 8 9213 7600 Fax +61 8 92       | 13 7611    |            | Contact:                   | urces           | Suga                            |            | golder.              | com.aı |            | Teleph    | one/Fa   | x: /   | 360     | Ø.      | C      | Contact |      | 7 19 19                  |
|---------------------------------------------------------------------------|------------|------------|----------------------------|-----------------|---------------------------------|------------|----------------------|--------|------------|-----------|----------|--------|---------|---------|--------|---------|------|--------------------------|
| Address where reports should be sent to                                   |            | 1,10       | Jess Ma                    | 4               | J/v                             | an C       |                      |        |            |           |          | А      | nalyse  | s Requ  | uired  |         |      |                          |
| West Perth, WA 6872<br>Telephone (61 8) 9213 7600<br>Fax (61 8) 9213 7611 | Other      |            | mai)                       |                 | te: 1704741                     | colu       | ontainers            | >      | (28)       | (8) May a |          |        |         |         |        |         |      | ) 4000<br>3011<br>3915 J |
| Sample Control<br>Number (SCN                                             |            |            | Date<br>Sampled<br>(D/M/Y) |                 |                                 |            | Number of Containers | 4000   | PALS SOLIA | Total m   |          |        |         |         |        |         | RUSH | Remarks<br>(over)        |
| 013077-01                                                                 |            | 5          | 28/6/17                    |                 |                                 |            | 1                    | X      |            |           | Si       |        |         |         |        |         |      |                          |
| - 02                                                                      |            |            |                            |                 |                                 |            | A                    | X      |            |           |          |        |         |         |        |         |      |                          |
| - 03                                                                      |            |            |                            |                 |                                 |            | 1                    | X      |            |           |          |        |         |         |        |         |      |                          |
| - 04                                                                      |            |            |                            |                 |                                 |            | 1                    | X      |            |           |          |        |         |         |        |         |      |                          |
| - 05                                                                      |            |            |                            |                 |                                 |            |                      | X      |            |           |          |        |         |         |        |         |      |                          |
| - 06                                                                      |            |            |                            |                 |                                 |            | 1                    | X      |            |           |          |        |         |         |        |         |      |                          |
| EJA 2-07                                                                  |            | V          |                            |                 |                                 |            | 1                    | X      |            | K.S.      |          |        |         |         |        |         | 验    |                          |
| - 08                                                                      |            | W          | V                          |                 |                                 |            | 1                    |        | X          | X         |          | 8.5    |         |         |        |         |      |                          |
| - 09                                                                      |            |            |                            |                 |                                 |            |                      |        | K          |           |          |        |         |         |        |         |      |                          |
| T'MULES 10                                                                |            |            |                            |                 |                                 |            | 5                    |        |            |           |          |        |         |         | 3.5    |         |      |                          |
| - 11                                                                      |            |            | 1788                       |                 |                                 |            |                      |        |            |           |          |        |         |         |        |         |      |                          |
| - 12                                                                      |            |            |                            |                 |                                 |            | 1                    |        |            |           |          |        |         |         |        |         |      |                          |
| Sampler's Signature:                                                      | Relinquish | ed by: Sig | nature (                   |                 | Company                         | Date 29(6) | 17                   |        | Tim        | е         |          | Rece   | eived b | y: Sigr | nature |         | Comp | pany                     |
| Sample Storage (°C)                                                       | Relinquish | ed by: Sig | nature                     |                 | Company                         | Date       |                      |        | Tim        | e         |          | Rece   | eived b | y; Sigr | nature |         | Comp | pany                     |
| Comments:                                                                 | Method of  | Shipment   |                            |                 | Waybill No:                     |            |                      | Rec    |            | for La    | b by:    |        | 7       | Date    | 2/6    |         |      | Time                     |
|                                                                           | Shipped by | y:         | en Brand                   | Title<br>Strike | Shipment Condition Seal intact: | n:         |                      | Ten    | np (°C)    | Co        | poler op | ened b | y:      | Date    |        |         |      | Time                     |

550310



Melbourne

Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Yelun 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

## Sample Receipt Advice

Company name: Golder Associates Pty Ltd (WA)

Contact name: Jessica Hay Project ID: 1779954 COC number: Not provided

Turn around time: 5 Day

Jun 29, 2017 1:00 PM Date/Time received:

Eurofins | mgt reference: 552310

### Sample information

- $\square$ A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- $\mathbf{V}$ All samples have been received as described on the above COC.
- $\mathbf{V}$ COC has been completed correctly.
- $\mathbf{V}$ Attempt to chill was evident.
- $\mathbf{V}$ Appropriately preserved sample containers have been used.
- $\mathbf{V}$ All samples were received in good condition.
- $\mathbf{V}$ Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- $\mathbf{V}$ Appropriate sample containers have been used.
- $\mathbf{V}$ Sample containers for volatile analysis received with zero headspace.
- $\boxtimes$ Some samples have been subcontracted.
- Custody Seals intact (if used).

### Contact notes

If you have any questions with respect to these samples please contact:

Robert Johnston on Phone : or by e.mail: RobertJohnston@eurofins.com

Results will be delivered electronically via e.mail to Jessica Hay - jhay@golder.com.au.







Golder Associates Pty Ltd (WA) Level 3, 1 Havelock Street West Perth WA 6005

The state of the s



# Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Jessica Hay

Report 552310-W

Project name

Project ID 1779954
Received Date Jun 29, 2017

| Client Sample ID                                               |      |      | Q13077-08    |
|----------------------------------------------------------------|------|------|--------------|
| Sample Matrix                                                  |      |      | Water        |
| Eurofins   mgt Sample No.                                      |      |      | M17-Jn31968  |
| Date Sampled                                                   |      |      | Jun 28, 2017 |
| Test/Reference                                                 | LOR  | Unit |              |
| Perfluoroalkyl carboxylic acids (PFCAs)                        |      |      |              |
| Perfluorobutanoic acid (PFBA)                                  | 0.05 | ug/L | < 0.05       |
| Perfluoropentanoic acid (PFPeA)                                | 0.01 | ug/L | < 0.01       |
| Perfluorohexanoic acid (PFHxA)                                 | 0.01 | ug/L | < 0.01       |
| Perfluoroheptanoic acid (PFHpA)                                | 0.01 | ug/L | < 0.01       |
| Perfluorooctanoic acid (PFOA)                                  | 0.01 | ug/L | < 0.01       |
| Perfluorononanoic acid (PFNA)                                  | 0.01 | ug/L | < 0.01       |
| Perfluorodecanoic acid (PFDA)                                  | 0.01 | ug/L | < 0.01       |
| Perfluoroundecanoic acid (PFUnA)                               | 0.01 | ug/L | < 0.01       |
| Perfluorododecanoic acid (PFDoA)                               | 0.01 | ug/L | < 0.01       |
| Perfluorotridecanoic acid (PFTrDA)                             | 0.01 | ug/L | < 0.01       |
| Perfluorotetradecanoic acid (PFTeDA)                           | 0.01 | ug/L | < 0.01       |
| 13C4-PFBA (surr.)                                              | 1    | %    | 86           |
| 13C5-PFPeA (surr.)                                             | 1    | %    | 108          |
| 13C5-PFHxA (surr.)                                             | 1    | %    | 90           |
| 13C4-PFHpA (surr.)                                             | 1    | %    | 86           |
| 13C8-PFOA (surr.)                                              | 1    | %    | 94           |
| 13C5-PFNA (surr.)                                              | 1    | %    | 119          |
| 13C6-PFDA (surr.)                                              | 1    | %    | 94           |
| 13C2-PFUnDA (surr.)                                            | 1    | %    | 62           |
| 13C2-PFDoDA (surr.)                                            | 1    | %    | 53           |
| 13C2-PFTeDA (surr.)                                            | 1    | %    | 31           |
| Perfluoroalkane sulfonamides (PFASAs)                          |      |      |              |
| Perfluorooctane sulfonamide (FOSA)                             | 0.05 | ug/L | < 0.05       |
| N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)              | 0.05 | ug/L | < 0.05       |
| N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)               | 0.05 | ug/L | < 0.05       |
| 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)  | 0.05 | ug/L | < 0.05       |
| 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)   | 0.05 | ug/L | < 0.05       |
| N-ethyl-perfluorooctanesulfonamidoacetic acid (N-<br>EtFOSAA)  | 0.05 | ug/L | < 0.05       |
| N-methyl-perfluorooctanesulfonamidoacetic acid (N-<br>MeFOSAA) | 0.05 | ug/L | < 0.05       |
| 13C8-FOSA (surr.)                                              | 1    | %    | 86           |
| D3-N-MeFOSA (surr.)                                            | 1    | %    | 45           |
| D5-N-EtFOSA (surr.)                                            | 1    | %    | 41           |
| D7-N-MeFOSE (surr.)                                            | 1    | %    | 36           |



| Client Sample ID                                      |              |       | Q13077-08    |
|-------------------------------------------------------|--------------|-------|--------------|
| Sample Matrix                                         |              |       | Water        |
| Eurofins   mgt Sample No.                             |              |       | M17-Jn31968  |
| Date Sampled                                          |              |       | Jun 28, 2017 |
| Test/Reference                                        | LOR          | Unit  |              |
| Perfluoroalkane sulfonamides (PFASAs)                 |              |       |              |
| D9-N-EtFOSE (surr.)                                   | 1            | %     | 35           |
| D5-N-EtFOSAA (surr.)                                  | 1            | %     | 94           |
| D3-N-MeFOSAA (surr.)                                  | 1            | %     | 89           |
| Perfluoroalkane sulfonic acids & Perfluoroalkane su   | ılfonates (F | FSAs) |              |
| Perfluorobutanesulfonic acid (PFBS)                   | 0.01         | ug/L  | < 0.01       |
| Perfluoropentanesulfonic acid (PFPeS)                 | 0.01         | ug/L  | < 0.01       |
| Perfluorohexanesulfonic acid (PFHxS)                  | 0.01         | ug/L  | < 0.01       |
| Perfluoroheptanesulfonic acid (PFHpS)                 | 0.01         | ug/L  | < 0.01       |
| Perfluorooctanesulfonic acid (PFOS) <sup>N11</sup>    | 0.01         | ug/L  | < 0.01       |
| Perfluorodecanesulfonic acid (PFDS)                   | 0.01         | ug/L  | < 0.01       |
| 13C3-PFBS (surr.)                                     | 1            | %     | 97           |
| 18O2-PFHxS (surr.)                                    | 1            | %     | 93           |
| 13C8-PFOS (surr.)                                     | 1            | %     | 75           |
| n:2 Fluorotelomer sulfonic acids                      |              |       |              |
| 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTS)    | 0.01         | ug/L  | < 0.01       |
| 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTS)    | 0.05         | ug/L  | < 0.05       |
| 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTS)    | 0.01         | ug/L  | < 0.01       |
| 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTS) | 0.01         | ug/L  | < 0.01       |
| 13C2-4:2 FTS (surr.)                                  | 1            | %     | 103          |
| 13C2-6:2 FTS (surr.)                                  | 1            | %     | 90           |
| 13C2-8:2 FTS (surr.)                                  | 1            | %     | 78           |
| Heavy Metals                                          |              |       |              |
| Arsenic (filtered)                                    | 0.001        | mg/L  | < 0.001      |
| Cadmium (filtered)                                    | 0.0002       | mg/L  | < 0.0002     |
| Chromium (filtered)                                   | 0.001        | mg/L  | < 0.001      |
| Copper (filtered)                                     | 0.001        | mg/L  | < 0.001      |
| Lead (filtered)                                       | 0.001        | mg/L  | < 0.001      |
| Mercury (filtered)                                    | 0.0001       | mg/L  | < 0.0001     |
| Nickel (filtered)                                     | 0.001        | mg/L  | < 0.001      |
| Zinc (filtered)                                       | 0.005        | mg/L  | < 0.005      |



### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                                  | Testing Site | Extracted    | <b>Holding Time</b> |
|------------------------------------------------------------------------------|--------------|--------------|---------------------|
| Per- and Polyfluorinated Alkyl Substances (PFASs)                            |              |              |                     |
| Perfluoroalkyl carboxylic acids (PFCAs)                                      | Brisbane     | Jul 05, 2017 | 14 Day              |
| - Method: LTM-ORG-2100 Per- and Polyfluorinated Alkyl Substances by LC-MS/MS |              |              |                     |
| Perfluoroalkane sulfonamides (PFASAs)                                        | Brisbane     | Jul 05, 2017 | 14 Day              |
| - Method: LTM-ORG-2100 Per- and Polyfluorinated Alkyl Substances by LC-MS/MS |              |              |                     |
| Perfluoroalkane sulfonic acids & Perfluoroalkane sulfonates (PFSAs)          | Brisbane     | Jul 05, 2017 | 14 Day              |
| - Method: LTM-ORG-2100 Per- and Polyfluorinated Alkyl Substances by LC-MS/MS |              |              |                     |
| n:2 Fluorotelomer sulfonic acids                                             | Brisbane     | Jul 05, 2017 | 14 Day              |
| - Method: LTM-ORG-2100 Per- and Polyfluorinated Alkyl Substances by LC-MS/MS |              |              |                     |
| Metals M8 filtered                                                           | Melbourne    | Jun 30, 2017 | 28 Day              |

<sup>-</sup> Method: LTM-MET-3040 Metals in Waters by ICP-MS

Report Number: 552310-W



ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

Company Name: Golder Associates Pty Ltd (WA) Order No.: Received: Jun 29, 2017 1:00 PM

 Address:
 Level 3, 1 Havelock Street
 Report #:
 552310
 Due:
 Jul 6, 2017

 West Perth
 Phone:
 08 9213 7600
 Priority:
 5 Day

WA 6005 **Fax:** 03 8862 3501 **Contact Name:** Sarah Garvey

**Project Name:** 

Project ID: 1779954

Eurofins | mgt Analytical Services Manager : Natalie Krasselt

|       |                                                 |                 | mple Detail      |        |             | HOLD | Metals M8 filtered X | Per- and Polyfluorinated Alkyl Substances (PFASs) |  |  |  |
|-------|-------------------------------------------------|-----------------|------------------|--------|-------------|------|----------------------|---------------------------------------------------|--|--|--|
| Melb  | Melbourne Laboratory - NATA Site # 1254 & 14271 |                 |                  |        |             |      |                      |                                                   |  |  |  |
| Sydr  | Sydney Laboratory - NATA Site # 18217           |                 |                  |        |             |      |                      |                                                   |  |  |  |
|       |                                                 | y - NATA Site # |                  |        |             |      |                      | Х                                                 |  |  |  |
| Perti | h Laboratory - N                                | NATA Site # 182 | 17               |        |             |      |                      |                                                   |  |  |  |
| Exte  | rnal Laboratory                                 | '               |                  |        |             |      |                      |                                                   |  |  |  |
| No    | Sample ID                                       | Sample Date     | Sampling<br>Time | Matrix | LAB ID      |      |                      |                                                   |  |  |  |
| 1     | Q13077-08                                       | Jun 28, 2017    |                  | Water  | M17-Jn31968 |      | Х                    | Х                                                 |  |  |  |
| 2     | Q13077-01                                       | Jun 28, 2017    |                  | Soil   | M17-Jn31969 | Х    |                      |                                                   |  |  |  |
| 3     | Q13077-02                                       | Jun 28, 2017    |                  | Soil   | M17-Jn31970 | Х    |                      |                                                   |  |  |  |
| 4     | Q13077-03                                       | Jun 28, 2017    |                  | Soil   | M17-Jn31971 | Х    |                      |                                                   |  |  |  |
| 5     | Q13077-04                                       | M17-Jn31972     | Х                |        |             |      |                      |                                                   |  |  |  |
| 6     | Q13077-05                                       | Jun 28, 2017    |                  | Soil   | M17-Jn31973 | Х    |                      |                                                   |  |  |  |
| 7     | Q13077-06                                       | Jun 28, 2017    |                  | Soil   | M17-Jn31974 | Х    |                      |                                                   |  |  |  |
| 8     | Q13077-07                                       | Jun 28, 2017    |                  | Soil   | M17-Jn31975 | Х    |                      |                                                   |  |  |  |
| Test  | Counts                                          |                 |                  |        |             | 7    | 1                    | 1                                                 |  |  |  |

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

Page 4 of 11
Report Number: 552310-W

Date Reported:Jul 07, 2017

ABN: 50 005 085 521 Telephone: +61 3 8564 5000



#### **Internal Quality Control Review and Glossary**

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

\*\*NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per kilogram
 mg/L: milligrams per litre

 ug/L: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100mL: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

#### QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

  Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



### **Quality Control Results**

| Test                                                                       | Units        | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|----------------------------------------------------------------------------|--------------|----------|----------------------|----------------|--------------------|
| Method Blank                                                               |              |          |                      |                |                    |
| Perfluoroalkyl carboxylic acids (PFCAs)                                    |              |          |                      |                |                    |
| Perfluorobutanoic acid (PFBA)                                              | ug/L         | < 0.05   | 0.05                 | Pass           |                    |
| Perfluoropentanoic acid (PFPeA)                                            | ug/L         | < 0.01   | 0.01                 | Pass           |                    |
| Perfluorohexanoic acid (PFHxA)                                             | ug/L         | < 0.01   | 0.01                 | Pass           |                    |
| Perfluoroheptanoic acid (PFHpA)                                            | ug/L         | < 0.01   | 0.01                 | Pass           |                    |
| Perfluorooctanoic acid (PFOA)                                              | ug/L         | < 0.01   | 0.01                 | Pass           |                    |
| Perfluorononanoic acid (PFNA)                                              | ug/L         | < 0.01   | 0.01                 | Pass           |                    |
| Perfluorodecanoic acid (PFDA)                                              | ug/L         | < 0.01   | 0.01                 | Pass           |                    |
| Perfluoroundecanoic acid (PFUnA)                                           | ug/L         | < 0.01   | 0.01                 | Pass           |                    |
| Perfluorododecanoic acid (PFDoA)                                           | ug/L         | < 0.01   | 0.01                 | Pass           |                    |
| Perfluorotridecanoic acid (PFTrDA)                                         | ug/L         | < 0.01   | 0.01                 | Pass           |                    |
| Perfluorotetradecanoic acid (PFTeDA)                                       | ug/L         | < 0.01   | 0.01                 | Pass           |                    |
| Method Blank                                                               |              |          | <br>                 |                |                    |
| Perfluoroalkane sulfonamides (PFASAs)                                      |              |          |                      |                |                    |
| Perfluorooctane sulfonamide (FOSA)                                         | ug/L         | < 0.05   | 0.05                 | Pass           |                    |
| N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)                          | ug/L         | < 0.05   | 0.05                 | Pass           |                    |
| N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)                           | ug/L         | < 0.05   | 0.05                 | Pass           |                    |
| 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-                     | /1           | . 0.05   | 0.05                 | Dana           |                    |
| MeFOSE)                                                                    | ug/L         | < 0.05   | 0.05                 | Pass           |                    |
| 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)               | ug/L         | < 0.05   | 0.05                 | Pass           |                    |
| N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)                  | ug/L         | < 0.05   | 0.05                 | Pass           |                    |
| N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)                 | ug/L         | < 0.05   | 0.05                 | Pass           |                    |
| Method Blank                                                               | (DECA a)     |          | T                    |                |                    |
| Perfluoroalkane sulfonic acids & Perfluoroalkane sulfonates                | ,            | . 0.01   | 0.01                 | Doos           |                    |
| Perfluorobutanesulfonic acid (PFBS)  Perfluoropentanesulfonic acid (PFPeS) | ug/L         | < 0.01   | 0.01                 | Pass<br>Pass   |                    |
| Perfluorohexanesulfonic acid (PFHxS)                                       | ug/L<br>ug/L | < 0.01   | 0.01                 | Pass           |                    |
| Perfluoroheptanesulfonic acid (PFHpS)                                      | ug/L         | < 0.01   | 0.01                 | Pass           |                    |
| Perfluorooctanesulfonic acid (PFOS)                                        | ug/L<br>ug/L | < 0.01   | 0.01                 | Pass           |                    |
| Perfluorodecanesulfonic acid (PFDS)                                        | ug/L         | < 0.01   | 0.01                 | Pass           |                    |
| Method Blank                                                               | ug/L         | _ < 0.01 | 0.01                 | F 455          |                    |
| n:2 Fluorotelomer sulfonic acids                                           |              |          |                      |                |                    |
| 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTS)                         | ug/L         | < 0.01   | 0.01                 | Pass           |                    |
| 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTS)                         | ug/L         | < 0.05   | 0.05                 | Pass           |                    |
| 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTS)                         | ug/L         | < 0.01   | 0.01                 | Pass           |                    |
| 1H.1H.2H.perfluorododecanesulfonic acid (10:2 FTS)                         | ug/L         | < 0.01   | 0.01                 | Pass           |                    |
| Method Blank                                                               | <u>~</u> g,  | 1 0.0 .  |                      |                |                    |
| Heavy Metals                                                               |              |          |                      |                |                    |
| Arsenic (filtered)                                                         | mg/L         | < 0.001  | 0.001                | Pass           |                    |
| Cadmium (filtered)                                                         | mg/L         | < 0.0002 | 0.0002               | Pass           |                    |
| Chromium (filtered)                                                        | mg/L         | < 0.001  | 0.001                | Pass           |                    |
| Copper (filtered)                                                          | mg/L         | < 0.001  | 0.001                | Pass           |                    |
| Lead (filtered)                                                            | mg/L         | < 0.001  | 0.001                | Pass           |                    |
| Mercury (filtered)                                                         | mg/L         | < 0.0001 | 0.0001               | Pass           |                    |
| Nickel (filtered)                                                          | mg/L         | < 0.001  | 0.001                | Pass           |                    |
| Zinc (filtered)                                                            | mg/L         | < 0.005  | 0.005                | Pass           |                    |
| LCS - % Recovery                                                           |              |          |                      |                |                    |
| Perfluoroalkyl carboxylic acids (PFCAs)                                    |              |          |                      |                |                    |
| Perfluorobutanoic acid (PFBA)                                              | %            | 90       | 50-150               | Pass           |                    |
| Perfluoropentanoic acid (PFPeA)                                            | %            | 102      | 50-150               | Pass           |                    |
| Perfluorohexanoic acid (PFHxA)                                             | %            | 103      | 50-150               | Pass           |                    |



| 100 |       |
|-----|-------|
|     |       |
|     | I ے ل |
|     | _     |

| Perfluoroheptanoic acid (PFHpA)  Perfluorooctanoic acid (PFOA)  Perfluorononanoic acid (PFNA)  Perfluorodecanoic acid (PFDA)  Perfluoroundecanoic acid (PFUnA)  Perfluorododecanoic acid (PFDOA)  Perfluorotridecanoic acid (PFTrDA)  Perfluorotetradecanoic acid (PFTeDA)  LCS - % Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                               | %       | 104      |   |                      |                | Code               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------|---------|----------|---|----------------------|----------------|--------------------|
| Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid (PFUnA) Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTrDA) Perfluorotetradecanoic acid (PFTeDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                               |         | 104      |   | 50-150               | Pass           |                    |
| Perfluorodecanoic acid (PFDA)  Perfluoroundecanoic acid (PFUnA)  Perfluorododecanoic acid (PFDoA)  Perfluorotridecanoic acid (PFTrDA)  Perfluorotetradecanoic acid (PFTeDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | Perfluorooctanoic acid (PFOA) |         |          |   | 50-150               | Pass           |                    |
| Perfluoroundecanoic acid (PFUnA) Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTrDA) Perfluorotetradecanoic acid (PFTeDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                               | %       | 92       |   | 50-150               | Pass           |                    |
| Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTrDA) Perfluorotetradecanoic acid (PFTeDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                               | %       | 91       |   | 50-150               | Pass           |                    |
| Perfluorotridecanoic acid (PFTrDA) Perfluorotetradecanoic acid (PFTeDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                               | %       | 106      |   | 50-150               | Pass           |                    |
| Perfluorotetradecanoic acid (PFTeDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                               | %       | 101      |   | 50-150               | Pass           |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                               | %       | 93       |   | 50-150               | Pass           |                    |
| LCS - % Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                               | %       | 103      |   | 50-150               | Pass           |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                               |         |          |   |                      |                |                    |
| Perfluoroalkane sulfonamides (PFASAs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                               |         |          |   |                      |                |                    |
| Perfluorooctane sulfonamide (FOSA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                               | %       | 92       |   | 50-150               | Pass           |                    |
| N-methylperfluoro-1-octane sulfonamide (N-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MeFOSA)     |                               | %       | 109      |   | 50-150               | Pass           |                    |
| N-ethylperfluoro-1-octane sulfonamide (N-E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                               | %       | 109      |   | 50-150               | Pass           |                    |
| 2-(N-methylperfluoro-1-octane sulfonamido)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | _                             |         |          |   |                      |                |                    |
| MèFOSE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                               | %       | 103      |   | 50-150               | Pass           |                    |
| 2-(N-ethylperfluoro-1-octane sulfonamido)-e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | thanol (N-E | tFOSE)                        | %       | 98       |   | 50-150               | Pass           |                    |
| N-ethyl-perfluorooctanesulfonamidoacetic a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cid (N-EtFC | SAA)                          | %       | 98       |   | 50-150               | Pass           |                    |
| N-methyl-perfluorooctanesulfonamidoacetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | acid (N-Me  | FOSAA)                        | %       | 103      |   | 50-150               | Pass           |                    |
| LCS - % Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                               |         |          |   |                      |                |                    |
| Perfluoroalkane sulfonic acids & Perfluoro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oalkane su  | Ifonates                      | (PFSAs) |          |   |                      |                |                    |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                               | %       | 101      |   | 50-150               | Pass           |                    |
| Perfluoropentanesulfonic acid (PFPeS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                               | %       | 113      |   | 50-150               | Pass           |                    |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                               | %       | 101      |   | 50-150               | Pass           |                    |
| Perfluoroheptanesulfonic acid (PFHpS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                               | %       | 96       |   | 50-150               | Pass           |                    |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                               | %       | 106      |   | 50-150               | Pass           |                    |
| Perfluorodecanesulfonic acid (PFDS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                               | %       | 76       |   | 50-150               | Pass           |                    |
| LCS - % Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                               | 70      | 10       |   | 30 130               | 1 433          |                    |
| n:2 Fluorotelomer sulfonic acids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                               |         |          |   | 1                    |                |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                               | %       | 99       |   | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                               | %       |          |   |                      |                |                    |
| 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                               |         | 101      |   | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                               | %       | 94       |   | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                               | %       | 61       |   | 50-150               | Pass           |                    |
| LCS - % Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                               |         | l        | Г | 1                    |                |                    |
| Heavy Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                               |         |          |   |                      |                |                    |
| Arsenic (filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                               | %       | 101      |   | 80-120               | Pass           |                    |
| Cadmium (filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                               | %       | 102      |   | 80-120               | Pass           |                    |
| Chromium (filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                               | %       | 98       |   | 80-120               | Pass           |                    |
| Copper (filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                               | %       | 98       |   | 80-120               | Pass           |                    |
| Lead (filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                               | %       | 100      |   | 80-120               | Pass           |                    |
| Mercury (filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                               | %       | 101      |   | 70-130               | Pass           |                    |
| Nickel (filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                               | %       | 98       |   | 80-120               | Pass           |                    |
| Zinc (filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                               | %       | 104      |   | 80-120               | Pass           |                    |
| Test Lab S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ample ID    | QA<br>Source                  | Units   | Result 1 |   | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Spike - % Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                               |         |          |   |                      |                |                    |
| Perfluoroalkyl carboxylic acids (PFCAs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                               |         | Result 1 |   |                      |                |                    |
| Perfluorobutanoic acid (PFBA) M17-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Jn30868     | NCP                           | %       | 90       |   | 50-150               | Pass           |                    |
| Perfluoropentanoic acid (PFPeA) M17-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Jn30868     | NCP                           | %       | 92       |   | 50-150               | Pass           |                    |
| • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jn30868     | NCP                           | %       | 101      |   | 50-150               | Pass           |                    |
| ` ' '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jn30868     | NCP                           | %       | 101      |   | 50-150               | Pass           |                    |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jn30868     | NCP                           | %       | 95       |   | 50-150               | Pass           |                    |
| ` ' '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jn30868     | NCP                           | %       | 92       |   | 50-150               | Pass           |                    |
| ` ' '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jn30868     | NCP                           | %       | 86       |   | 50-150               | Pass           |                    |
| TENNING TO THE TENNIN | Jn30868     | NCP                           | %       | 98       |   | 50-150               | Pass           |                    |
| ` ' '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jn30868     | NCP                           | %       | 98       |   | 50-150               | Pass           |                    |



### mgt

| Test                                                                                  | Lab Sample ID     | QA<br>Source | Units   | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|---------------------------------------------------------------------------------------|-------------------|--------------|---------|----------|----------------------|----------------|--------------------|
| Perfluorotridecanoic acid (PFTrDA)                                                    | M17-Jn30868       | NCP          | %       | 72       | 50-150               | Pass           |                    |
| Perfluorotetradecanoic acid (PFTeDA)                                                  | M17-Jn30868       | NCP          | %       | 100      | 50-150               | Pass           |                    |
| Spike - % Recovery                                                                    |                   |              |         |          |                      |                |                    |
| Perfluoroalkane sulfonamides (PF                                                      | ASAs)             |              |         | Result 1 |                      |                |                    |
| Perfluorooctane sulfonamide (FOSA)                                                    | M17-Jn30868       | NCP          | %       | 90       | 50-150               | Pass           |                    |
| N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)                                     | M17-Jn30868       | NCP          | %       | 104      | 50-150               | Pass           |                    |
| N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)                                      | M17-Jn30868       | NCP          | %       | 102      | 50-150               | Pass           |                    |
| 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)                         | M17-Jn30868       | NCP          | %       | 105      | 50-150               | Pass           |                    |
| 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)                          | M17-Jn30868       | NCP          | %       | 102      | 50-150               | Pass           |                    |
| N-ethyl-<br>perfluorooctanesulfonamidoacetic<br>acid (N-EtFOSAA)                      | M17-Jn30868       | NCP          | %       | 98       | 50-150               | Pass           |                    |
| N-methyl-<br>perfluorooctanesulfonamidoacetic<br>acid (N-MeFOSAA)                     | M17-Jn30868       | NCP          | %       | 97       | 50-150               | Pass           |                    |
| Spike - % Recovery                                                                    |                   |              |         |          |                      |                |                    |
| Perfluoroalkane sulfonic acids & P                                                    | erfluoroalkane su | Ifonates (   | (PFSAs) | Result 1 |                      |                |                    |
| Perfluorobutanesulfonic acid (PFBS)                                                   | M17-Jn30868       | NCP          | %       | 100      | 50-150               | Pass           |                    |
| Perfluoropentanesulfonic acid (PFPeS)                                                 | M17-Jn30868       | NCP          | %       | 110      | 50-150               | Pass           |                    |
| Perfluorohexanesulfonic acid (PFHxS)                                                  | M17-Jn30868       | NCP          | %       | 102      | 50-150               | Pass           |                    |
| Perfluoroheptanesulfonic acid (PFHpS)                                                 | M17-Jn30868       | NCP          | %       | 95       | 50-150               | Pass           |                    |
| Perfluorooctanesulfonic acid (PFOS)                                                   | M17-Jn30868       | NCP          | %       | 105      | 50-150               | Pass           |                    |
| Perfluorodecanesulfonic acid (PFDS)                                                   | M17-Jn30868       | NCP          | %       | 56       | 50-150               | Pass           |                    |
| Spike - % Recovery                                                                    |                   |              |         | Decult 4 |                      |                |                    |
| n:2 Fluorotelomer sulfonic acids  1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTS) | M17-Jn30868       | NCP          | %       | Result 1 | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-<br>perfluorooctanesulfonic acid (6:2<br>FTS)                             | M17-Jn30868       | NCP          | %       | 99       | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-<br>perfluorodecanesulfonic acid (8:2<br>FTS)                             | M17-Jn30868       | NCP          | %       | 92       | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-<br>perfluorododecanesulfonic acid<br>(10:2 FTS)                          | M17-Jn30868       | NCP          | %       | 50       | 50-150               | Pass           |                    |
| Spike - % Recovery                                                                    |                   |              |         |          |                      |                |                    |
| Heavy Metals                                                                          | ı                 | 1 -          |         | Result 1 |                      |                |                    |
| Arsenic (filtered)                                                                    | M17-Jn30370       | NCP          | %       | 110      | 70-130               | Pass           |                    |
| Cadmium (filtered)                                                                    | M17-Jn30370       | NCP          | %       | 102      | 70-130               | Pass           |                    |
| Chromium (filtered)                                                                   | M17-Jn30370       | NCP          | %       | 103      | 70-130               | Pass           |                    |
| Copper (filtered)                                                                     | M17-Jn30370       | NCP          | %       | 99       | 70-130               | Pass           |                    |
| Lead (filtered)                                                                       | M17-Jn30370       | NCP          | %       | 101      | 70-130               | Pass           |                    |
| Mercury (filtered)                                                                    | M17-Jn30370       | NCP          | %       | 108      | 70-130               | Pass           |                    |
| Nickel (filtered)                                                                     | M17-Jn30370       | NCP          | %       | 99       | 70-130               | Pass           |                    |
| Zinc (filtered)                                                                       | M17-Jn30370       | NCP          | %       | 106      | 70-130               | Pass           |                    |



### mgt

| Test                                                              | Lab Sample ID     | QA<br>Source | Units   | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-------------------------------------------------------------------|-------------------|--------------|---------|----------|----------|-----|----------------------|----------------|--------------------|
| Duplicate                                                         |                   |              |         |          |          |     |                      |                |                    |
| Perfluoroalkyl carboxylic acids (PI                               | FCAs)             | 1            |         | Result 1 | Result 2 | RPD |                      |                |                    |
| Perfluorobutanoic acid (PFBA)                                     | M17-Jn30869       | NCP          | ug/L    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| Perfluoropentanoic acid (PFPeA)                                   | M17-Jn30869       | NCP          | ug/L    | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| Perfluorohexanoic acid (PFHxA)                                    | M17-Jn30869       | NCP          | ug/L    | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| Perfluoroheptanoic acid (PFHpA)                                   | M17-Jn30869       | NCP          | ug/L    | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| Perfluorooctanoic acid (PFOA)                                     | M17-Jn30869       | NCP          | ug/L    | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| Perfluorononanoic acid (PFNA)                                     | M17-Jn30869       | NCP          | ug/L    | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| Perfluorodecanoic acid (PFDA)                                     | M17-Jn30869       | NCP          | ug/L    | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| Perfluoroundecanoic acid (PFUnA)                                  | M17-Jn30869       | NCP          | ug/L    | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| Perfluorododecanoic acid (PFDoA)                                  | M17-Jn30869       | NCP          | ug/L    | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| Perfluorotridecanoic acid (PFTrDA)                                | M17-Jn30869       | NCP          | ug/L    | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| Perfluorotetradecanoic acid (PFTeDA)                              | M17-Jn30869       | NCP          | ug/L    | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| Duplicate                                                         |                   |              |         |          |          |     |                      |                |                    |
| Perfluoroalkane sulfonamides (PF                                  | ASAs)             | ,            |         | Result 1 | Result 2 | RPD |                      |                |                    |
| Perfluorooctane sulfonamide (FOSA)                                | M17-Jn30869       | NCP          | ug/L    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)                 | M17-Jn30869       | NCP          | ug/L    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)                  | M17-Jn30869       | NCP          | ug/L    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)     | M17-Jn30869       | NCP          | ug/L    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)      | M17-Jn30869       | NCP          | ug/L    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| N-ethyl-<br>perfluorooctanesulfonamidoacetic<br>acid (N-EtFOSAA)  | M17-Jn30869       | NCP          | ug/L    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| N-methyl-<br>perfluorooctanesulfonamidoacetic<br>acid (N-MeFOSAA) | M17-Jn30869       | NCP          | ug/L    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| Duplicate                                                         |                   |              |         |          |          |     |                      |                |                    |
| Perfluoroalkane sulfonic acids & F                                | erfluoroalkane su | Ilfonates    | (PFSAs) | Result 1 | Result 2 | RPD |                      |                |                    |
| Perfluorobutanesulfonic acid (PFBS)                               | M17-Jn30869       | NCP          | ug/L    | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| Perfluoropentanesulfonic acid (PFPeS)                             | M17-Jn30869       | NCP          | ug/L    | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| Perfluorohexanesulfonic acid (PFHxS)                              | M17-Jn30869       | NCP          | ug/L    | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| Perfluoroheptanesulfonic acid (PFHpS)                             | M17-Jn30869       | NCP          | ug/L    | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| Perfluorooctanesulfonic acid (PFOS)                               | M17-Jn30869       | NCP          | ug/L    | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| Perfluorodecanesulfonic acid (PFDS)                               | M17-Jn30869       | NCP          | ug/L    | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| Duplicate                                                         |                   |              |         |          |          |     |                      |                |                    |
| n:2 Fluorotelomer sulfonic acids                                  | Ι                 | 1            |         | Result 1 | Result 2 | RPD |                      |                |                    |
| 1H.1H.2H.2H-<br>perfluorohexanesulfonic acid (4:2<br>FTS)         | M17-Jn30869       | NCP          | ug/L    | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| 1H.1H.2H.2H-<br>perfluorooctanesulfonic acid (6:2<br>FTS)         | M17-Jn30869       | NCP          | ug/L    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| 1H.1H.2H-<br>perfluorodecanesulfonic acid (8:2<br>FTS)            | M17-Jn30869       | NCP          | ug/L    | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| 1H.1H.2H-<br>perfluorododecanesulfonic acid<br>(10:2 FTS)         | M17-Jn30869       | NCP          | ug/L    | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |

Report Number: 552310-W



| Duplicate           |             |     |          |          |          |     |     |      |  |
|---------------------|-------------|-----|----------|----------|----------|-----|-----|------|--|
| Heavy Metals        |             |     | Result 1 | Result 2 | RPD      |     |     |      |  |
| Arsenic (filtered)  | M17-Jn30370 | NCP | mg/L     | 0.002    | 0.002    | 4.0 | 30% | Pass |  |
| Cadmium (filtered)  | M17-Jn30370 | NCP | mg/L     | < 0.0002 | < 0.0002 | <1  | 30% | Pass |  |
| Chromium (filtered) | M17-Jn30370 | NCP | mg/L     | < 0.001  | < 0.001  | <1  | 30% | Pass |  |
| Copper (filtered)   | M17-Jn30370 | NCP | mg/L     | < 0.001  | < 0.001  | <1  | 30% | Pass |  |
| Lead (filtered)     | M17-Jn30370 | NCP | mg/L     | < 0.001  | < 0.001  | <1  | 30% | Pass |  |
| Mercury (filtered)  | M17-Jn30370 | NCP | mg/L     | < 0.0001 | < 0.0001 | <1  | 30% | Pass |  |
| Nickel (filtered)   | M17-Jn30370 | NCP | mg/L     | 0.008    | 0.010    | 15  | 30% | Pass |  |
| Zinc (filtered)     | M17-Jn30370 | NCP | mg/L     | < 0.005  | < 0.005  | <1  | 30% | Pass |  |

Report Number: 552310-W



#### Comments

Some surrogate recoveries were recorded in excess of the QC limit designated in QSM 5.1 of 50-150%. Since no positive results were reported for any PFAS compounds for any of the Samples in this case no data was affected.

### Sample Integrity

| Custody Seals Intact (if used)                                          | N/A |
|-------------------------------------------------------------------------|-----|
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |

### **Qualifier Codes/Comments**

Code Description

Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds. Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation).

### **Authorised By**

N11

Robert Johnston Analytical Services Manager
Alex Petridis Senior Analyst-Metal (VIC)
Jonathon Angell Senior Analyst-Organic (QLD)

J. Jahr

#### Glenn Jackson

### **National Operations Manager**

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- \* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please  $\underline{\text{click here.}}$ 

Eurofins I mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In on case shall Eurofins I mgt be liable for consequential claims and experience of the interpretation given in this report. In on case shall Eurofins I mgt be liable for consequential claims and experience of the interpretation given in this report. In or case shall Eurofins I mgt be liable for consequential claims and experience of the interpretation given in this report. In or case shall Eurofins I mgt be liable for consequential claims and experience of the interpretation given in this report. In or case shall Eurofins I mgt be liable for consequential claims.

# CHAIN OF CUSTODY RECORD/ANALYSIS REQUEST

Q 00185 page\_of\_)

2006 - # 170+24 Golw

1 Havelock Street

| Project Number: 1749950 | 1                                     | Laboratory Name: | 2        |
|-------------------------|---------------------------------------|------------------|----------|
| <b>《李秋·</b> 泉》于200      |                                       | Address:         |          |
| Golder Contact:         | Golder Email Address:  @golder.com.au | Telephone/Fax:   | Contact: |

| West Perth, WA 6005 Australia Telehone +61 8 9213 7600 Fax +61 8 921      | 3 7611 Gold                | er Contact:                | Golder           | Email Address: | jolder.c             | com.au   | Te       | elepho | ne/Fax  | c -      |          |                    | Contact | :    |                   |
|---------------------------------------------------------------------------|----------------------------|----------------------------|------------------|----------------|----------------------|----------|----------|--------|---------|----------|----------|--------------------|---------|------|-------------------|
| Address where reports should be sent to                                   | (C)                        | holloyd                    |                  |                |                      |          |          |        |         | Anal     | yses Re  | equired            |         | u i  |                   |
| West Perth, WA 6872<br>Telephone (61 8) 9213 7600<br>Fax (61 8) 9213 7611 | Other Phone                | Fax                        |                  |                | ontainers            | xlad.    | 24GOLW   | Sinle  | Slonk   |          | SSUL     | )                  |         |      |                   |
| Sample Control<br>Number (SCN                                             | Sample<br>Matrix<br>(over) | Date<br>Sampled<br>(D/M/Y) |                  |                | Number of Containers | 111/ 295 | 4/404    | Male   | The f   |          | Khale    | 1000               |         | RUSH | Remarks<br>(over) |
| ) as   C - 01                                                             | W                          | 10/7                       |                  |                | 0                    |          |          | V      |         |          |          |                    |         |      |                   |
| - 02                                                                      | W                          |                            |                  |                | a                    | 1        |          | V      |         |          |          | 1                  |         |      |                   |
| - 03                                                                      | W                          |                            |                  |                | 9                    |          |          | V      |         | P P      |          |                    |         |      |                   |
| - 04                                                                      | W                          |                            |                  |                | a                    |          |          | V      |         |          |          | 1                  |         |      | West Control      |
| - 05                                                                      | 10/                        |                            |                  |                | 9                    |          | 1        | 1      |         |          |          |                    |         |      |                   |
| - 06                                                                      | W/                         |                            |                  |                | q                    |          |          | V      |         |          | 1        |                    |         |      |                   |
| - 07                                                                      | 10/                        | 1/                         |                  |                | 1                    |          |          |        | 1       |          |          |                    |         |      |                   |
| - 08                                                                      | S                          |                            |                  |                | 7                    |          |          |        | N       |          | 1        | 1                  |         |      |                   |
| - 09                                                                      | -92                        | 4                          |                  |                | Ema                  | 810      |          | -      |         |          | 55%      |                    |         |      |                   |
| - 10                                                                      | Seguen.                    |                            |                  |                |                      |          |          |        | -       |          | 20%      |                    |         |      |                   |
| (-11                                                                      |                            |                            |                  |                |                      |          |          |        | -       |          |          |                    |         | -    |                   |
| - 12                                                                      |                            |                            |                  |                |                      |          |          |        |         |          |          |                    |         | +    |                   |
|                                                                           |                            |                            |                  |                |                      |          |          |        |         |          |          |                    | Ш       |      |                   |
| mpler's Signature:                                                        | Relinquished by: S         | ignature                   | Company          | Date 0/-       | 7                    |          | Time     |        |         | Receive  | d by: Si | gnatur             | е       | Comp | pany              |
| ple Storage (°C)                                                          | Relinquished by: S         | ignature                   | Company          | Date           |                      |          | Time     |        |         | Receive  | d by: Si | gnatur             | е       | Comp | pany              |
| nents:                                                                    | Method of Shipmer          | nt                         | Waybill No:      |                |                      | Rece     | eived fo | or Lab | þy: M   | 45       | Dat      | te <sub>10</sub> / | 7/17    |      | Timel4:58         |
|                                                                           | Shipped by:                |                            | Shipment Conditi | on:            |                      | Temp     | (°C)     | Coo    | ler ope | ened by: | Dat      | te                 |         | 98   | Time              |

553774



Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Yelun 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

## Sample Receipt Advice

Company name: Golder Associates Pty Ltd (WA)

Contact name: Sarah Garvey Project ID: 1779954 COC number: Not provided Turn around time: 5 Day

Jul 10, 2017 2:58 PM Date/Time received:

Eurofins | mgt reference: 553774

### Sample information

- $\square$ A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- $\mathbf{V}$ All samples have been received as described on the above COC.
- $\mathbf{V}$ COC has been completed correctly.
- $\mathbf{V}$ Attempt to chill was evident.
- $\mathbf{V}$ Appropriately preserved sample containers have been used.
- $\mathbf{V}$ All samples were received in good condition.
- $\mathbf{V}$ Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- $\mathbf{V}$ Appropriate sample containers have been used.
- $\mathbf{V}$ Sample containers for volatile analysis received with zero headspace.
- $\boxtimes$ Some samples have been subcontracted.
- Custody Seals intact (if used).

#### Contact notes

If you have any questions with respect to these samples please contact:

Robert Johnston on Phone : or by e.mail: RobertJohnston@eurofins.com

Results will be delivered electronically via e.mail to Sarah Garvey - SGarvey@golder.com.au.







Golder Associates Pty Ltd (WA) Level 3, 1 Havelock Street **West Perth** WA 6005

Attention: Sarah Garvey

553774-W Report

Project name

Project ID 1779954 Received Date Jul 10, 2017







### Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

| Client Sample ID                                  |       |           | Q00185-1     | Q00185-2     | Q00185-3     | Q00185-4     |  |
|---------------------------------------------------|-------|-----------|--------------|--------------|--------------|--------------|--|
| Sample Matrix                                     |       |           | Water        | Water        | Water        | Water        |  |
| Eurofins   mgt Sample No.                         |       |           | M17-JI11959  | M17-JI11960  | M17-JI11961  | M17-JI11962  |  |
| Date Sampled                                      |       |           | Jul 10, 2017 | Jul 10, 2017 | Jul 10, 2017 | Jul 10, 2017 |  |
| Test/Reference                                    | LOR   | Unit      |              |              |              |              |  |
| Total Recoverable Hydrocarbons - 1999 NEPM        |       | Onit      |              |              |              |              |  |
| TRH C6-C9                                         | 0.02  | mg/L      | < 0.02       | < 0.02       | < 0.02       | < 0.02       |  |
| TRH C10-C14                                       | 0.05  | mg/L      | < 0.05       | < 0.05       | < 0.05       | < 0.05       |  |
| TRH C15-C28                                       | 0.1   | mg/L      | < 0.1        | < 0.1        | < 0.1        | < 0.1        |  |
| TRH C29-C36                                       | 0.1   | mg/L      | < 0.1        | < 0.1        | < 0.1        | < 0.1        |  |
| TRH C10-36 (Total)                                | 0.1   | mg/L      | < 0.1        | < 0.1        | < 0.1        | < 0.1        |  |
| BTEX                                              | 1 0   | 1119/2    | 10.1         | 1 0.1        | 10.1         | 10.1         |  |
| Benzene                                           | 0.001 | mg/L      | < 0.001      | < 0.001      | < 0.001      | < 0.001      |  |
| Toluene                                           | 0.001 | mg/L      | < 0.001      | < 0.001      | < 0.001      | < 0.001      |  |
| Ethylbenzene                                      | 0.001 | mg/L      | < 0.001      | < 0.001      | < 0.001      | < 0.001      |  |
| m&p-Xylenes                                       | 0.002 | mg/L      | < 0.002      | < 0.002      | < 0.002      | < 0.002      |  |
| o-Xylene                                          | 0.001 | mg/L      | < 0.001      | < 0.001      | < 0.001      | < 0.001      |  |
| Xylenes - Total                                   | 0.003 | mg/L      | < 0.003      | < 0.003      | < 0.003      | < 0.003      |  |
| 4-Bromofluorobenzene (surr.)                      | 1     | %         | 120          | 109          | 132          | 100          |  |
| Total Recoverable Hydrocarbons - 2013 NEPM        |       | 70        |              | 100          |              |              |  |
| Naphthalene <sup>N02</sup>                        | 0.01  | mg/L      | < 0.01       | < 0.01       | < 0.01       | < 0.01       |  |
| TRH C6-C10 less BTEX (F1)N04                      | 0.02  | mg/L      | < 0.02       | < 0.02       | < 0.02       | < 0.02       |  |
| TRH C6-C10                                        | 0.02  | mg/L      | < 0.02       | < 0.02       | < 0.02       | < 0.02       |  |
| TRH >C10-C16                                      | 0.05  | mg/L      | < 0.05       | < 0.05       | < 0.05       | < 0.05       |  |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 0.05  | mg/L      | < 0.05       | < 0.05       | < 0.05       | < 0.05       |  |
| TRH >C16-C34                                      | 0.1   | mg/L      | < 0.1        | < 0.1        | < 0.1        | < 0.1        |  |
| TRH >C34-C40                                      | 0.1   | mg/L      | < 0.1        | < 0.1        | < 0.1        | < 0.1        |  |
| Polycyclic Aromatic Hydrocarbons                  |       | 1 1119, = |              |              |              |              |  |
| Acenaphthene                                      | 0.001 | mg/L      | < 0.001      | < 0.001      | < 0.001      | < 0.001      |  |
| Acenaphthylene                                    | 0.001 | mg/L      | < 0.001      | < 0.001      | < 0.001      | < 0.001      |  |
| Anthracene                                        | 0.001 | mg/L      | < 0.001      | < 0.001      | < 0.001      | < 0.001      |  |
| Benz(a)anthracene                                 | 0.001 | mg/L      | < 0.001      | < 0.001      | < 0.001      | < 0.001      |  |
| Benzo(a)pyrene                                    | 0.001 | mg/L      | < 0.001      | < 0.001      | < 0.001      | < 0.001      |  |
| Benzo(b&j)fluoranthene <sup>N07</sup>             | 0.001 | mg/L      | < 0.001      | < 0.001      | < 0.001      | < 0.001      |  |
| Benzo(g.h.i)perylene                              | 0.001 | mg/L      | < 0.001      | < 0.001      | < 0.001      | < 0.001      |  |
| Benzo(k)fluoranthene                              | 0.001 | mg/L      | < 0.001      | < 0.001      | < 0.001      | < 0.001      |  |
| Chrysene                                          | 0.001 | mg/L      | < 0.001      | < 0.001      | < 0.001      | < 0.001      |  |
| Dibenz(a.h)anthracene                             | 0.001 | mg/L      | < 0.001      | < 0.001      | < 0.001      | < 0.001      |  |
| Fluoranthene                                      | 0.001 | mg/L      | < 0.001      | < 0.001      | < 0.001      | < 0.001      |  |
| Fluorene                                          | 0.001 | mg/L      | < 0.001      | < 0.001      | < 0.001      | < 0.001      |  |
| Indeno(1.2.3-cd)pyrene                            | 0.001 | mg/L      | < 0.001      | < 0.001      | < 0.001      | < 0.001      |  |



| Client Semale ID                        |       |      | 000405.4     | 000405.0     | 000405.0     | 000405.4     |  |
|-----------------------------------------|-------|------|--------------|--------------|--------------|--------------|--|
| Client Sample ID                        |       |      | Q00185-1     | Q00185-2     | Q00185-3     | Q00185-4     |  |
| Sample Matrix                           |       |      | Water        | Water        | Water        | Water        |  |
| Eurofins   mgt Sample No.               |       |      | M17-JI11959  | M17-JI11960  | M17-JI11961  | M17-JI11962  |  |
| Date Sampled                            |       |      | Jul 10, 2017 | Jul 10, 2017 | Jul 10, 2017 | Jul 10, 2017 |  |
| Test/Reference                          | LOR   | Unit |              |              |              |              |  |
| Polycyclic Aromatic Hydrocarbons        |       |      |              |              |              |              |  |
| Naphthalene                             | 0.001 | mg/L | < 0.001      | < 0.001      | < 0.001      | < 0.001      |  |
| Phenanthrene                            | 0.001 | mg/L | < 0.001      | < 0.001      | < 0.001      | < 0.001      |  |
| Pyrene                                  | 0.001 | mg/L | < 0.001      | < 0.001      | < 0.001      | < 0.001      |  |
| Total PAH*                              | 0.001 | mg/L | < 0.001      | < 0.001      | < 0.001      | < 0.001      |  |
| 2-Fluorobiphenyl (surr.)                | 1     | %    | 90           | 62           | 59           | 55           |  |
| p-Terphenyl-d14 (surr.)                 | 1     | %    | 108          | 92           | 125          | 126          |  |
| Phenois (Halogenated)                   |       |      |              |              |              |              |  |
| 2-Chlorophenol                          | 0.003 | mg/L | < 0.003      | < 0.003      | < 0.003      | < 0.003      |  |
| 2.4-Dichlorophenol                      | 0.003 | mg/L | < 0.003      | < 0.003      | < 0.003      | < 0.003      |  |
| 2.4.5-Trichlorophenol                   | 0.01  | mg/L | < 0.01       | < 0.01       | < 0.01       | < 0.01       |  |
| 2.4.6-Trichlorophenol                   | 0.01  | mg/L | < 0.01       | < 0.01       | < 0.01       | < 0.01       |  |
| 2.6-Dichlorophenol                      | 0.003 | mg/L | < 0.003      | < 0.003      | < 0.003      | < 0.003      |  |
| 4-Chloro-3-methylphenol                 | 0.01  | mg/L | < 0.01       | < 0.01       | < 0.01       | < 0.01       |  |
| Pentachlorophenol                       | 0.01  | mg/L | < 0.01       | < 0.01       | < 0.01       | < 0.01       |  |
| Tetrachlorophenols - Total              | 0.03  | mg/L | < 0.03       | < 0.03       | < 0.03       | < 0.03       |  |
| Total Halogenated Phenol*               | 0.01  | mg/L | < 0.01       | < 0.01       | < 0.01       | < 0.01       |  |
| Phenols (non-Halogenated)               |       |      |              |              |              |              |  |
| 2-Cyclohexyl-4.6-dinitrophenol          | 0.1   | mg/L | < 0.1        | < 0.1        | < 0.1        | < 0.1        |  |
| 2-Methyl-4.6-dinitrophenol              | 0.03  | mg/L | < 0.03       | < 0.03       | < 0.03       | < 0.03       |  |
| 2-Methylphenol (o-Cresol)               | 0.003 | mg/L | < 0.003      | < 0.003      | < 0.003      | < 0.003      |  |
| 2-Nitrophenol                           | 0.01  | mg/L | < 0.01       | < 0.01       | < 0.01       | < 0.01       |  |
| 2.4-Dimethylphenol                      | 0.003 | mg/L | < 0.003      | < 0.003      | < 0.003      | < 0.003      |  |
| 2.4-Dinitrophenol                       | 0.03  | mg/L | < 0.03       | < 0.03       | < 0.03       | < 0.03       |  |
| 3&4-Methylphenol (m&p-Cresol)           | 0.006 | mg/L | < 0.006      | < 0.006      | < 0.006      | < 0.006      |  |
| 4-Nitrophenol                           | 0.03  | mg/L | < 0.03       | < 0.03       | < 0.03       | < 0.03       |  |
| Dinoseb                                 | 0.1   | mg/L | < 0.1        | < 0.1        | < 0.1        | < 0.1        |  |
| Phenol                                  | 0.003 | mg/L | < 0.003      | < 0.003      | < 0.003      | < 0.003      |  |
| Total Non-Halogenated Phenol*           | 0.1   | mg/L | < 0.1        | < 0.1        | < 0.1        | < 0.1        |  |
| Phenol-d6 (surr.)                       | 1     | %    | 38           | 39           | 59           | 48           |  |
| Perfluoroalkyl carboxylic acids (PFCAs) | •     | •    |              |              |              |              |  |
| Perfluorobutanoic acid (PFBA)           | 0.05  | ug/L | 0.53         | < 0.05       | < 0.05       | 0.26         |  |
| Perfluoropentanoic acid (PFPeA)         | 0.01  | ug/L | 2.6          | 0.16         | 0.16         | 1.3          |  |
| Perfluorohexanoic acid (PFHxA)          | 0.01  | ug/L | 2.6          | 0.17         | 0.17         | 1.7          |  |
| Perfluoroheptanoic acid (PFHpA)         | 0.01  | ug/L | 0.65         | 0.03         | 0.03         | 0.48         |  |
| Perfluorooctanoic acid (PFOA)           | 0.01  | ug/L | N090.08      | < 0.01       | < 0.01       | N090.07      |  |
| Perfluorononanoic acid (PFNA)           | 0.01  | ug/L | < 0.01       | < 0.01       | < 0.01       | < 0.01       |  |
| Perfluorodecanoic acid (PFDA)           | 0.01  | ug/L | < 0.01       | < 0.01       | < 0.01       | < 0.01       |  |
| Perfluoroundecanoic acid (PFUnA)        | 0.01  | ug/L | < 0.01       | < 0.01       | < 0.01       | < 0.01       |  |
| Perfluorododecanoic acid (PFDoA)        | 0.01  | ug/L | < 0.01       | < 0.01       | < 0.01       | < 0.01       |  |
| Perfluorotridecanoic acid (PFTrDA)      | 0.01  | ug/L | < 0.01       | < 0.01       | < 0.01       | < 0.01       |  |
| Perfluorotetradecanoic acid (PFTeDA)    | 0.01  | ug/L | < 0.01       | < 0.01       | < 0.01       | < 0.01       |  |
| 13C4-PFBA (surr.)                       | 1     | %    | 75           | 73           | 76           | 80           |  |
| 13C5-PFPeA (surr.)                      | 1     | %    | 83           | 86           | 90           | 85           |  |
| 13C5-PFHxA (surr.)                      | 1     | %    | 75           | 81           | 81           | 78           |  |
| 13C4-PFHpA (surr.)                      | 1     | %    | 97           | 95           | 95           | 95           |  |
| 13C8-PFOA (surr.)                       | 1     | %    | 138          | 103          | 115          | 113          |  |
| 13C5-PFNA (surr.)                       | 1     | %    | 119          | 102          | 94           | 99           |  |
| 13C6-PFDA (surr.)                       | 1     | %    | 109          | 86           | 82           | 84           |  |
| 13C2-PFUnDA (surr.)                     | 1     | %    | 95           | 80           | 79           | 73           |  |



| Client Sample ID                                              |              |          | Q00185-1                                | Q00185-2            | Q00185-3     | Q00185-4                                |
|---------------------------------------------------------------|--------------|----------|-----------------------------------------|---------------------|--------------|-----------------------------------------|
| Sample Matrix                                                 |              |          | Water                                   | Water               | Water        | Water                                   |
| Eurofins   mgt Sample No.                                     |              |          | M17-JI11959                             | M17-JI11960         | M17-JI11961  | M17-JI11962                             |
| Date Sampled                                                  |              |          | Jul 10, 2017                            | Jul 10, 2017        | Jul 10, 2017 | Jul 10, 2017                            |
| Test/Reference                                                | LOR          | Unit     | , , , , , , , , , , , , , , , , , , , , | ,                   |              | , , , , , , , , , , , , , , , , , , , , |
| Perfluoroalkyl carboxylic acids (PFCAs)                       | LOIK         | 01       |                                         |                     |              |                                         |
| 13C2-PFDoDA (surr.)                                           | 1            | %        | 95                                      | 71                  | 70           | 68                                      |
| 13C2-PFTeDA (surr.)                                           | 1            | %        | 76                                      | 65                  | 70           | 58                                      |
| Perfluoroalkane sulfonamides (PFASAs)                         |              | •        |                                         |                     |              |                                         |
| Perfluorooctane sulfonamide (FOSA)                            | 0.05         | ug/L     | < 0.05                                  | < 0.05              | < 0.05       | < 0.05                                  |
| N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)             | 0.05         | ug/L     | < 0.05                                  | < 0.05              | < 0.05       | < 0.05                                  |
| N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)              | 0.05         | ug/L     | < 0.05                                  | < 0.05              | < 0.05       | < 0.05                                  |
| 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) | 0.05         | ug/L     | < 0.05                                  | < 0.05              | < 0.05       | < 0.05                                  |
| 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)  | 0.05         | ug/L     | < 0.05                                  | < 0.05              | < 0.05       | < 0.05                                  |
| N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)     | 0.05         | ug/L     | < 0.05                                  | < 0.05              | < 0.05       | < 0.05                                  |
| N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)    | 0.05         | ug/L     | < 0.05                                  | < 0.05              | < 0.05       | < 0.05                                  |
| 13C8-FOSA (surr.)                                             | 1            | %        | 97                                      | 82                  | 78           | 81                                      |
| D3-N-MeFOSA (surr.)                                           | 1            | %        | 74                                      | 49                  | 57           | 60                                      |
| D5-N-EtFOSA (surr.)                                           | 1            | %        | 74                                      | 51                  | 61           | 64                                      |
| D7-N-MeFOSE (surr.)                                           | 1            | %        | 39                                      | 26                  | 31           | 31                                      |
| D9-N-EtFOSE (surr.)                                           | 1            | %        | 55                                      | 34                  | 39           | 41                                      |
| D5-N-EtFOSAA (surr.)                                          | 1            | %        | 78                                      | 59                  | 58           | 58                                      |
| D3-N-MeFOSAA (surr.)                                          | 1            | %        | 80                                      | 68                  | 69           | 63                                      |
| Perfluoroalkane sulfonic acids & Perfluoroalkane su           | ılfonates (l | PFSAs)   |                                         |                     |              |                                         |
| Perfluorobutanesulfonic acid (PFBS)                           | 0.01         | ug/L     | 0.12                                    | 0.01                | < 0.01       | 0.07                                    |
| Perfluoropentanesulfonic acid (PFPeS)                         | 0.01         | ug/L     | N090.07                                 | < 0.01              | < 0.01       | <sup>N09</sup> 0.05                     |
| Perfluorohexanesulfonic acid (PFHxS)                          | 0.01         | ug/L     | <sup>N09</sup> 0.15                     | <sup>N09</sup> 0.01 | N090.01      | <sup>N09</sup> 0.11                     |
| Perfluoroheptanesulfonic acid (PFHpS)                         | 0.01         | ug/L     | < 0.01                                  | < 0.01              | < 0.01       | < 0.01                                  |
| Perfluorooctanesulfonic acid (PFOS)N11                        | 0.01         | ug/L     | N090.02                                 | <sup>N09</sup> 0.01 | < 0.01       | N090.04                                 |
| Perfluorodecanesulfonic acid (PFDS)                           | 0.01         | ug/L     | < 0.01                                  | < 0.01              | < 0.01       | < 0.01                                  |
| 13C3-PFBS (surr.)                                             | 1            | %        | 97                                      | 93                  | 92           | 96                                      |
| 18O2-PFHxS (surr.)                                            | 1            | %        | 96                                      | 86                  | 84           | 88                                      |
| 13C8-PFOS (surr.)                                             | 1            | %        | 91                                      | 76                  | 72           | 70                                      |
| n:2 Fluorotelomer sulfonic acids                              | ı            | T        |                                         |                     |              |                                         |
| 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTS)            | 0.01         | ug/L     | < 0.01                                  | < 0.01              | < 0.01       | < 0.01                                  |
| 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTS)            | 0.05         | ug/L     | < 0.05                                  | < 0.05              | < 0.05       | < 0.05                                  |
| 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTS)            | 0.01         | ug/L     | < 0.01                                  | < 0.01              | < 0.01       | < 0.01                                  |
| 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTS)         | 0.01         | ug/L     | < 0.01                                  | < 0.01              | < 0.01       | < 0.01                                  |
| 13C2-4:2 FTS (surr.)                                          | 1            | %        | 173                                     | 161                 | 141          | 161                                     |
| 13C2-6:2 FTS (surr.)                                          | 1            | %        | 199                                     | 165                 | 161          | 174                                     |
| 13C2-8:2 FTS (surr.)                                          | 1            | %        | 142                                     | 117                 | 107          | 111                                     |
| Ammonia (as N)                                                | 0.01         | mg/L     | 1.1                                     | 1.3                 | 1.3          | 0.36                                    |
| Biochemical Oxygen Demand (BOD-5 Day)                         | 5            | mg/L     | < 5                                     | < 5                 | < 5          | < 5                                     |
| Chemical Oxygen Demand (COD)                                  | 25           | mg/L     | 480                                     | 270                 | 420          | 260                                     |
| Chloride                                                      | 1            | mg/L     | 140                                     | 140                 | 150          | 44                                      |
| Conductivity (at 25°C)                                        | 1            | uS/cm    | 1100                                    | 680                 | 680          | 780                                     |
| Nitrate & Nitrite (as N)                                      | 0.05         | mg/L     | 25                                      | < 0.05              | < 0.05       | 33                                      |
| Nitrate (as N)                                                | 0.02         | mg/L     | 24                                      | < 0.02              | < 0.02       | 33                                      |
| Nitrite (as N)                                                | 0.02         | mg/L     | 0.67                                    | < 0.02              | < 0.02       | 0.04                                    |
| рН                                                            | 0.1          | pH Units | 6.2                                     | 5.3                 | 5.3          | 6.2                                     |
| Phosphate total (as P)                                        | 0.05         | mg/L     | 5.3                                     | 2.7                 | 2.7          | 2.0                                     |



| Client Sample ID                 |        |      | Q00185-1     | Q00185-2     | Q00185-3     | Q00185-4     |
|----------------------------------|--------|------|--------------|--------------|--------------|--------------|
| Sample Matrix                    |        |      | Water        | Water        | Water        | Water        |
| Eurofins   mgt Sample No.        |        |      | M17-JI11959  | M17-JI11960  | M17-JI11961  | M17-JI11962  |
| Date Sampled                     |        |      | Jul 10, 2017 | Jul 10, 2017 | Jul 10, 2017 | Jul 10, 2017 |
| Test/Reference                   | LOR    | Unit |              |              |              |              |
| Phosphorus reactive (as P)       | 0.05   | mg/L | 5.1          | 3.1          | 3.0          | 2.4          |
| Sulphate (as SO4)                | 5      | mg/L | 190          | 63           | 62           | 130          |
| Total Dissolved Solids           | 10     | mg/L | 1100         | 750          | 690          | 630          |
| Total Kjeldahl Nitrogen (as N)   | 0.2    | mg/L | 14           | 5.0          | 6.4          | 8.1          |
| Total Nitrogen (as N)            | 0.2    | mg/L | 39           | 5.0          | 6.4          | 41           |
| Total Organic Carbon             | 5      | mg/L | 200          | 160          | 160          | 110          |
| Alkalinity (speciated)           |        |      |              |              |              |              |
| Bicarbonate Alkalinity (as HCO3) | 20     | mg/L | 110          | 29           | 24           | 68           |
| Carbonate Alkalinity (as CO3)    | 10     | mg/L | < 10         | < 10         | < 10         | < 10         |
| Hydroxide Alkalinity (as CaCO3)  | 10     | mg/L | < 10         | < 10         | < 10         | < 10         |
| Total Alkalinity (as CaCO3)      | 20     | mg/L | 92           | 24           | < 20         | 56           |
| Alkali Metals                    |        |      |              |              |              |              |
| Calcium                          | 0.5    | mg/L | 41           | 8.5          | 8.3          | 42           |
| Magnesium                        | 0.5    | mg/L | 17           | 8.1          | 7.9          | 16           |
| Potassium                        | 0.5    | mg/L | 86           | 37           | 37           | 49           |
| Sodium                           | 0.5    | mg/L | 91           | 70           | 69           | 35           |
| Heavy Metals                     |        |      |              |              |              |              |
| Aluminium (filtered)             | 0.05   | mg/L | 0.42         | 1.7          | 1.6          | 0.38         |
| Arsenic (filtered)               | 0.001  | mg/L | 0.004        | < 0.001      | < 0.001      | 0.003        |
| Cadmium (filtered)               | 0.0002 | mg/L | < 0.0002     | < 0.0002     | < 0.0002     | < 0.0002     |
| Chromium (filtered)              | 0.001  | mg/L | 0.004        | 0.007        | 0.008        | 0.002        |
| Copper (filtered)                | 0.001  | mg/L | 0.007        | < 0.001      | 0.001        | 0.016        |
| Iron (filtered)                  | 0.05   | mg/L | 2.8          | 2.2          | 2.1          | 1.0          |
| Lead (filtered)                  | 0.001  | mg/L | 0.002        | < 0.001      | < 0.001      | 0.001        |
| Mercury (filtered)               | 0.0001 | mg/L | < 0.0001     | < 0.0001     | < 0.0001     | < 0.0001     |
| Nickel (filtered)                | 0.001  | mg/L | 0.007        | 0.005        | 0.006        | 0.009        |
| Zinc (filtered)                  | 0.005  | mg/L | 0.034        | 0.016        | 0.017        | 0.028        |
| Hardness Set                     |        |      |              |              |              |              |
| Hardness mg equivalent CaCO3/L   | 5      | mg/L | 170          | 54           | 53           | 170          |

| Client Sample ID<br>Sample Matrix             |         |      | Q00185-5<br>Water | Q00185-6<br>Water | Q00185-7<br>Water |
|-----------------------------------------------|---------|------|-------------------|-------------------|-------------------|
| Eurofins   mgt Sample No.                     |         |      | M17-JI11963       | M17-JI11964       | M17-JI11965       |
| Date Sampled                                  |         |      | Jul 10, 2017      | Jul 10, 2017      | Jul 10, 2017      |
| Test/Reference                                | LOR     | Unit |                   |                   |                   |
| Total Recoverable Hydrocarbons - 1999 NEPM Fr | actions |      |                   |                   |                   |
| TRH C6-C9                                     | 0.02    | mg/L | < 0.02            | < 0.02            | < 0.02            |
| TRH C10-C14                                   | 0.05    | mg/L | < 0.05            | < 0.05            | -                 |
| TRH C15-C28                                   | 0.1     | mg/L | < 0.1             | < 0.1             | -                 |
| TRH C29-C36                                   | 0.1     | mg/L | < 0.1             | < 0.1             | -                 |
| TRH C10-36 (Total)                            | 0.1     | mg/L | < 0.1             | < 0.1             | -                 |
| BTEX                                          |         |      |                   |                   |                   |
| Benzene                                       | 0.001   | mg/L | < 0.001           | < 0.001           | < 0.001           |
| Toluene                                       | 0.001   | mg/L | < 0.001           | < 0.001           | < 0.001           |
| Ethylbenzene                                  | 0.001   | mg/L | < 0.001           | < 0.001           | < 0.001           |
| m&p-Xylenes                                   | 0.002   | mg/L | < 0.002           | < 0.002           | < 0.002           |
| o-Xylene                                      | 0.001   | mg/L | < 0.001           | < 0.001           | < 0.001           |



| Client Sample ID                                  |       |              | Q00185-5          | Q00185-6          | Q00185-7     |
|---------------------------------------------------|-------|--------------|-------------------|-------------------|--------------|
| Sample Matrix                                     |       |              | Water             | Water             | Water        |
| Eurofins   mgt Sample No.                         |       |              | M17-JI11963       | M17-JI11964       | M17-JI11965  |
| Date Sampled                                      |       |              | Jul 10, 2017      | Jul 10, 2017      | Jul 10, 2017 |
| •                                                 | LOB   | l lade       | Jul 10, 2017      | Jul 10, 2017      | Jul 10, 2017 |
| Test/Reference BTEX                               | LOR   | Unit         |                   |                   |              |
|                                                   | 0.000 |              | . 0.000           | . 0.002           | . 0.002      |
| Xylenes - Total                                   | 0.003 | mg/L<br>%    | < 0.003           | < 0.003           | < 0.003      |
| 4-Bromofluorobenzene (surr.)                      |       | %            | 104               | 107               | 117          |
| Total Recoverable Hydrocarbons - 2013 NEPM        |       |              | 0.04              | 0.04              | 0.04         |
| Naphthalene <sup>N02</sup>                        | 0.01  | mg/L         | < 0.01            | < 0.01            | < 0.01       |
| TRH C6-C10 less BTEX (F1) <sup>N04</sup>          | 0.02  | mg/L         | < 0.02            | < 0.02            | < 0.02       |
| TRH C6-C10                                        | 0.02  | mg/L         | < 0.02            | < 0.02            | < 0.02       |
| TRH > C10-C16                                     | 0.05  | mg/L         | < 0.05            | < 0.05            | -            |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 0.05  | mg/L         | < 0.05            | < 0.05            | -            |
| TRH >C16-C34                                      | 0.1   | mg/L         | < 0.1             | < 0.1             | -            |
| TRH >C34-C40                                      | 0.1   | mg/L         | < 0.1             | < 0.1             | -            |
| Polycyclic Aromatic Hydrocarbons                  |       |              | 6.227             | 2.22              | +            |
| Acenaphthene                                      | 0.001 | mg/L         | < 0.001           | < 0.001           | -            |
| Acenaphthylene                                    | 0.001 | mg/L         | < 0.001           | < 0.001           | -            |
| Anthracene                                        | 0.001 | mg/L         | < 0.001           | < 0.001           | -            |
| Benz(a)anthracene                                 | 0.001 | mg/L         | < 0.001           | < 0.001           | -            |
| Benzo(a)pyrene                                    | 0.001 | mg/L         | < 0.001           | < 0.001           | -            |
| Benzo(b&j)fluoranthene <sup>N07</sup>             | 0.001 | mg/L         | < 0.001           | < 0.001           | -            |
| Benzo(g.h.i)perylene                              | 0.001 | mg/L         | < 0.001           | < 0.001           | -            |
| Benzo(k)fluoranthene                              | 0.001 | mg/L         | < 0.001           | < 0.001           | -            |
| Chrysene                                          | 0.001 | mg/L         | < 0.001           | < 0.001           | -            |
| Dibenz(a.h)anthracene                             | 0.001 | mg/L         | < 0.001           | < 0.001           | -            |
| Fluoranthene                                      | 0.001 | mg/L         | < 0.001           | < 0.001           | -            |
| Fluorene                                          | 0.001 | mg/L         | < 0.001           | < 0.001           | -            |
| Indeno(1.2.3-cd)pyrene                            | 0.001 | mg/L         | < 0.001           | < 0.001           | -            |
| Naphthalene                                       | 0.001 | mg/L         | < 0.001           | < 0.001           | -            |
| Phenanthrene                                      | 0.001 | mg/L         | < 0.001           | < 0.001           | -            |
| Pyrene Tatal PALI*                                | 0.001 | mg/L         | < 0.001           | < 0.001           | -            |
| Total PAH*                                        | 0.001 | mg/L         | < 0.001           | < 0.001           | -            |
| 2-Fluorobiphenyl (surr.)                          | 1     | %            | 104               | 64                | -            |
| p-Terphenyl-d14 (surr.)                           | 1     | %            | 130               | 101               | -            |
| Phenois (Halogenated)                             | 0.000 |              | 0.000             | 0.000             |              |
| 2-Chlorophenol                                    | 0.003 | mg/L         | < 0.003           | < 0.003           | -            |
| 2.4-Dichlorophenol                                |       | mg/L         | < 0.003           | < 0.003           | -            |
| 2.4.5-Trichlorophenol                             | 0.01  | mg/L         | < 0.01            | < 0.01            | -            |
| 2.4.6-Trichlorophenol                             | 0.01  | mg/L         | < 0.01            | < 0.01            | -            |
| 2.6-Dichlorophenol  4-Chloro-3-methylphenol       | 0.003 | mg/L         | < 0.003<br>< 0.01 | < 0.003<br>< 0.01 | -            |
| Pentachlorophenol                                 | 0.01  | mg/L<br>mg/L | < 0.01            | < 0.01            | -            |
| Tetrachlorophenols - Total                        | 0.01  |              | < 0.01            | < 0.01            | -            |
| Total Halogenated Phenol*                         | 0.03  | mg/L         | < 0.03            | < 0.03            | -            |
|                                                   | 0.01  | mg/L         | < 0.01            | < 0.01            | -            |
| Phenols (non-Halogenated)                         | 0.1   | m ~ /I       | .01               | - 0.1             | +            |
| 2-Cyclohexyl-4.6-dinitrophenol                    | 0.1   | mg/L         | < 0.1             | < 0.1             | -            |
| 2-Methyl-hanal (a Crass)                          | 0.03  | mg/L         | < 0.03            | < 0.03            | -            |
| 2-Methylphenol (o-Cresol)                         | 0.003 | mg/L         | < 0.003           | < 0.003           | -            |
| 2-Nitrophenol                                     | 0.01  | mg/L         | < 0.01            | < 0.01            | -            |
| 2.4-Dimethylphenol                                | 0.003 | mg/L         | < 0.003           | < 0.003           | -            |
| 2.4-Dinitrophenol                                 | 0.03  | mg/L         | < 0.03            | < 0.03            | -            |
| 3&4-Methylphenol (m&p-Cresol) 4-Nitrophenol       | 0.006 | mg/L<br>mg/L | < 0.006<br>< 0.03 | < 0.006<br>< 0.03 | -            |



| Client Sample ID                                              |              |        | Q00185-5            | Q00185-6     | Q00185-7     |
|---------------------------------------------------------------|--------------|--------|---------------------|--------------|--------------|
| Sample Matrix                                                 |              |        | Water               | Water        | Water        |
| Eurofins   mgt Sample No.                                     |              |        | M17-JI11963         | M17-JI11964  | M17-JI11965  |
| Date Sampled                                                  |              |        | Jul 10, 2017        | Jul 10, 2017 | Jul 10, 2017 |
| Test/Reference                                                | LOR          | Unit   |                     |              |              |
| Phenols (non-Halogenated)                                     | •            |        |                     |              |              |
| Dinoseb                                                       | 0.1          | mg/L   | < 0.1               | < 0.1        | -            |
| Phenol                                                        | 0.003        | mg/L   | < 0.003             | < 0.003      | -            |
| Total Non-Halogenated Phenol*                                 | 0.1          | mg/L   | < 0.1               | < 0.1        | -            |
| Phenol-d6 (surr.)                                             | 1            | %      | 37                  | 35           | -            |
| Perfluoroalkyl carboxylic acids (PFCAs)                       |              | -      |                     |              |              |
| Perfluorobutanoic acid (PFBA)                                 | 0.05         | ug/L   | 0.49                | < 0.05       | -            |
| Perfluoropentanoic acid (PFPeA)                               | 0.01         | ug/L   | 2.1                 | < 0.01       | -            |
| Perfluorohexanoic acid (PFHxA)                                | 0.01         | ug/L   | 1.0                 | < 0.01       | -            |
| Perfluoroheptanoic acid (PFHpA)                               | 0.01         | ug/L   | 0.20                | < 0.01       | -            |
| Perfluorooctanoic acid (PFOA)                                 | 0.01         | ug/L   | <sup>N09</sup> 0.02 | < 0.01       | -            |
| Perfluorononanoic acid (PFNA)                                 | 0.01         | ug/L   | < 0.01              | < 0.01       | -            |
| Perfluorodecanoic acid (PFDA)                                 | 0.01         | ug/L   | < 0.01              | < 0.01       | -            |
| Perfluoroundecanoic acid (PFUnA)                              | 0.01         | ug/L   | < 0.01              | < 0.01       | -            |
| Perfluorododecanoic acid (PFDoA)                              | 0.01         | ug/L   | < 0.01              | < 0.01       | -            |
| Perfluorotridecanoic acid (PFTrDA)                            | 0.01         | ug/L   | < 0.01              | < 0.01       | -            |
| Perfluorotetradecanoic acid (PFTeDA)                          | 0.01         | ug/L   | < 0.01              | < 0.01       | -            |
| 13C4-PFBA (surr.)                                             | 1            | %      | 66                  | 73           | -            |
| 13C5-PFPeA (surr.)                                            | 1            | %      | 66                  | 90           | -            |
| 13C5-PFHxA (surr.)                                            | 1            | %      | 73                  | 85           | -            |
| 13C4-PFHpA (surr.)                                            | 1            | %      | 91                  | 96           | -            |
| 13C8-PFOA (surr.)                                             | 1            | %      | 94                  | 103          | -            |
| 13C5-PFNA (surr.)                                             | 1            | %      | 90                  | 92           | -            |
| 13C6-PFDA (surr.)                                             | 1            | %      | 80                  | 85           | -            |
| 13C2-PFUnDA (surr.)                                           | 1            | %      | 82                  | 77           | -            |
| 13C2-PFDoDA (surr.)                                           | 1            | %      | 75                  | 81           | -            |
| 13C2-PFTeDA (surr.)                                           | 1            | %      | 74                  | 55           | -            |
| Perfluoroalkane sulfonamides (PFASAs)                         |              |        |                     |              |              |
| Perfluorooctane sulfonamide (FOSA)                            | 0.05         | ug/L   | < 0.05              | < 0.05       | -            |
| N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)             | 0.05         | ug/L   | < 0.05              | < 0.05       | -            |
| N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)              | 0.05         | ug/L   | < 0.05              | < 0.05       | -            |
| 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) | 0.05         | ug/L   | < 0.05              | < 0.05       | -            |
| 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)  | 0.05         | ug/L   | < 0.05              | < 0.05       | -            |
| N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)     | 0.05         | ug/L   | < 0.05              | < 0.05       | -            |
| N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)    | 0.05         | ug/L   | < 0.05              | < 0.05       | -            |
| 13C8-FOSA (surr.)                                             | 1            | %      | 70                  | 67           | -            |
| D3-N-MeFOSA (surr.)                                           | 1            | %      | 66                  | 57           | -            |
| D5-N-EtFOSA (surr.)                                           | 1            | %      | 69                  | 57           | -            |
| D7-N-MeFOSE (surr.)                                           | 1            | %      | 27                  | 27           | -            |
| D9-N-EtFOSE (surr.)                                           | 1            | %      | 43                  | 35           | -            |
| D5-N-EtFOSAA (surr.)                                          | 1            | %      | 57                  | 61           | -            |
| D3-N-MeFOSAA (surr.)                                          | 1            | %      | 62                  | 75           | -            |
| Perfluoroalkane sulfonic acids & Perfluoroalkane su           | Ilfonates (F | PFSAs) |                     |              |              |
| Perfluorobutanesulfonic acid (PFBS)                           | 0.01         | ug/L   | 0.05                | < 0.01       | -            |
| Perfluoropentanesulfonic acid (PFPeS)                         | 0.01         | ug/L   | N090.02             | < 0.01       | -            |
| Perfluorohexanesulfonic acid (PFHxS)                          | 0.01         | ug/L   | <sup>N09</sup> 0.04 | < 0.01       | -            |
| Perfluoroheptanesulfonic acid (PFHpS)                         | 0.01         | ug/L   | < 0.01              | < 0.01       | _            |



| Client Sample ID                                         |              |                           | Q00185-5     | Q00185-6            | Q00185-7     |
|----------------------------------------------------------|--------------|---------------------------|--------------|---------------------|--------------|
| Sample Matrix                                            |              |                           | Water        | Water               | Water        |
| Eurofins   mgt Sample No.                                |              |                           | M17-JI11963  | M17-JI11964         | M17-JI11965  |
| , • .                                                    |              |                           |              |                     |              |
| Date Sampled                                             |              |                           | Jul 10, 2017 | Jul 10, 2017        | Jul 10, 2017 |
| Test/Reference                                           | LOR          | Unit                      |              |                     |              |
| Perfluoroalkane sulfonic acids & Perfluoroalkane s       | ulfonates (F | PFSAs)                    |              |                     |              |
| Perfluorooctanesulfonic acid (PFOS) <sup>N11</sup>       | 0.01         | ug/L                      | < 0.01       | <sup>N09</sup> 0.11 | -            |
| Perfluorodecanesulfonic acid (PFDS)                      | 0.01         | ug/L                      | < 0.01       | < 0.01              | -            |
| 13C3-PFBS (surr.)                                        | 1            | %                         | 94           | 93                  | -            |
| 18O2-PFHxS (surr.)                                       | 1            | %                         | 86           | 87                  | -            |
| 13C8-PFOS (surr.)                                        | 1            | %                         | 71           | 71                  | -            |
| n:2 Fluorotelomer sulfonic acids                         |              |                           |              |                     |              |
| 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTS)       | 0.01         | ug/L                      | < 0.01       | < 0.01              | -            |
| 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTS)       | 0.05         | ug/L                      | < 0.05       | < 0.05              | -            |
| 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTS)       | 0.01         | ug/L                      | < 0.01       | < 0.01              | -            |
| 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2<br>FTS) | 0.01         | ug/L                      | < 0.01       | < 0.01              | _            |
| 13C2-4:2 FTS (surr.)                                     | 1            | %                         | 159          | 151                 | _            |
| 13C2-6:2 FTS (surr.)                                     | 1            | %                         | 167          | 156                 | -            |
| 13C2-8:2 FTS (surr.)                                     | 1            | %                         | 112          | 115                 | -            |
|                                                          | 1            |                           |              |                     |              |
| Ammonia (as N)                                           | 0.01         | mg/L                      | 2.5          | 1.2                 | -            |
| Biochemical Oxygen Demand (BOD-5 Day)                    | 5            | mg/L                      | < 5          | < 5                 | -            |
| Chemical Oxygen Demand (COD)                             | 25           | mg/L                      | 300          | 350                 | -            |
| Chloride                                                 | 1            | mg/L                      | 150          | 77                  | -            |
| Conductivity (at 25°C)                                   | 1            | uS/cm                     | 870          | 400                 | -            |
| Nitrate & Nitrite (as N)                                 | 0.05         | mg/L                      | 4.2          | < 0.05              | -            |
| Nitrate (as N)                                           | 0.02         | mg/L                      | 4.1          | < 0.02              | -            |
| Nitrite (as N)                                           | 0.02         | mg/L                      | 0.16         | < 0.02              | -            |
| pH                                                       | 0.1          | pH Units                  |              | 4.2                 | -            |
| Phosphate total (as P)                                   | 0.05         | mg/L                      | 1.4          | 12                  | -            |
| Phosphorus reactive (as P)                               | 0.05         | mg/L                      | 1.3          | 11                  | -            |
| Sulphate (as SO4)                                        | 5            | mg/L                      | 180          | 31                  | -            |
| Total Dissolved Solids                                   | 10           | mg/L                      | 690          | 570                 | -            |
| Total Nitrogen (as N)                                    | 0.2          | mg/L<br>mg/L              | 9.0          | 5.5<br>5.5          | -            |
| Total Nitrogen (as N) Total Organic Carbon               | 5            |                           |              | 240                 | -            |
| Alkalinity (speciated)                                   | ] 3          | mg/L                      | 120          | 240                 | -            |
| Bicarbonate Alkalinity (as HCO3)                         | 20           | ma/l                      | 25           | < 20                |              |
| Carbonate Alkalinity (as CO3)                            | 20<br>10     | mg/L<br>mg/L              | < 10         | < 10                | -            |
| Hydroxide Alkalinity (as CaCO3)                          | 10           | mg/L                      | < 10         | < 10                | -            |
| Total Alkalinity (as CaCO3)                              | 20           | mg/L                      | 20           | < 20                | _            |
| Alkali Metals                                            |              | ı my/L                    | 20           | \ 20                | 1            |
| Calcium                                                  | 0.5          | mg/L                      | 35           | 3.9                 | _            |
| Magnesium                                                | 0.5          | mg/L                      | 25           | 9.5                 | _            |
| Potassium                                                | 0.5          | mg/L                      | 29           | 18                  | _            |
| Sodium                                                   | 0.5          | mg/L                      | 60           | 40                  | _            |
| Heavy Metals                                             | , 0.0        | , <u>ə</u> , <del>-</del> |              | .,                  |              |
| Aluminium (filtered)                                     | 0.05         | mg/L                      | 0.72         | 0.78                | -            |
| Arsenic (filtered)                                       | 0.001        | mg/L                      | < 0.001      | < 0.001             | _            |
| Cadmium (filtered)                                       | 0.0002       | mg/L                      | < 0.0002     | < 0.0002            | -            |
| Chromium (filtered)                                      | 0.001        | mg/L                      | 0.002        | 0.004               | _            |
| Copper (filtered)                                        | 0.001        | mg/L                      | 0.010        | < 0.001             | _            |
| Iron (filtered)                                          | 0.05         | mg/L                      | 3.5          | 3.1                 | -            |
| Lead (filtered)                                          | 0.001        | mg/L                      | 0.002        | < 0.001             | _            |



| Client Sample ID Sample Matrix Eurofins   mgt Sample No. Date Sampled |        |      | Q00185-5<br>Water<br>M17-JI11963<br>Jul 10, 2017 | Q00185-6<br>Water<br>M17-JI11964<br>Jul 10, 2017 | Q00185-7<br>Water<br>M17-JI11965<br>Jul 10, 2017 |
|-----------------------------------------------------------------------|--------|------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| Test/Reference                                                        | LOR    | Unit |                                                  |                                                  |                                                  |
| Heavy Metals                                                          |        |      |                                                  |                                                  |                                                  |
| Mercury (filtered)                                                    | 0.0001 | mg/L | < 0.0001                                         | < 0.0001                                         | -                                                |
| Nickel (filtered)                                                     | 0.001  | mg/L | 0.006                                            | 0.004                                            | -                                                |
| Zinc (filtered)                                                       | 0.005  | mg/L | 0.032                                            | 0.009                                            | -                                                |
| Hardness Set                                                          |        |      |                                                  |                                                  |                                                  |
| Hardness mg equivalent CaCO3/L                                        | 5      | mg/L | 190                                              | 49                                               | -                                                |

Report Number: 553774-W



#### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions             | Testing Site Melbourne | Extracted Jul 13, 2017 | Holding Time<br>7 Day |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------|------------------------|-----------------------|
| Methodum    | •                                                                            |                        |                        | ·                     |
| Volatic Organics   Melbourne   Jul 12, 2017   7 Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BTEX                                                                         | Melbourne              | Jul 12, 2017           | 14 Day                |
| - Method: LTMLORG 2159 VOCG in Solis Lugal and other Aqueous Matrices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - Method: TRH C6-C40 - LTM-ORG-2010                                          |                        |                        |                       |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volatile Organics                                                            | Melbourne              | Jul 12, 2017           | 7 Days                |
| Melbourne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices       |                        |                        |                       |
| Total Recoverable Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total Recoverable Hydrocarbons - 2013 NEPM Fractions                         | Melbourne              | Jul 12, 2017           | 7 Day                 |
| Method: TRH CR-CABLTM-ORG-2010   NSW DECC - Waste Classification Table 1   Total Recoverable Hydrocarbons - 2013 NEPM Fractions   Melbourne   Jul 13, 2017   7 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - Method: TRH C6-C40 - LTM-ORG-2010                                          |                        |                        |                       |
| NSW DECC - Waste Classification Table 1   Total Recoverable Hydrocarbons - 2013 NEPM Fractions   Melbourne   Jul 13, 2017   7 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total Recoverable Hydrocarbons                                               | Melbourne              | Jul 12, 2017           | 7 Day                 |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - Method: TRH C6-C40 - LTM-ORG-2010                                          |                        |                        |                       |
| Melbourne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NSW DECC - Waste Classification Table 1                                      |                        |                        |                       |
| Polycyclic Aromatic Hydrocarbons   Melbourne   Jul 13, 2017   7 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total Recoverable Hydrocarbons - 2013 NEPM Fractions                         | Melbourne              | Jul 13, 2017           | 7 Day                 |
| Melbourne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - Method: TRH C6-C40 - LTM-ORG-2010                                          |                        |                        |                       |
| Phenols (Halogenated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Polycyclic Aromatic Hydrocarbons                                             | Melbourne              | Jul 13, 2017           | 7 Day                 |
| Melbout: LTM-ORG-2130 PAH and Phenols in Water by GCMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - Method: LTM-ORG-2130 PAH and Phenols in Water by GCMS                      |                        |                        |                       |
| Phenols (non-Halogenated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Phenols (Halogenated)                                                        | Melbourne              | Jul 13, 2017           | 7 Days                |
| Method: LTM-NGG-2130 PAH and Phenois in Water by GCMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - Method: LTM-ORG-2130 PAH and Phenols in Water by GCMS                      |                        |                        |                       |
| Per- and Polyfluorinated Alkyl Substances (PFASs)   Perfluoroalkyl cariotx (PFCAs)   Brisbane   Jul 13, 2017   14 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Phenols (non-Halogenated)                                                    | Melbourne              | Jul 13, 2017           | 7 Day                 |
| Perfluoroalkyl carboxylic acids (PFCAs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Method: LTM-ORG-2130 PAH and Phenols in Water by GCMS                      |                        |                        |                       |
| Perfluoroalkane sulfonamides (PFASAs) Method: LTM-ORG-2100 Per- and Polyfluorinated Alkyl Substances by LC-MSMS Perfluoroalkane sulfonamides (PFASAs) Method: LTM-ORG-2100 Per- and Polyfluorinated Alkyl Substances by LC-MSMS Perfluoroalkane sulfonic acids & Perfluoroalkane sulfonates (PFSAs) Method: LTM-ORG-2100 Per- and Polyfluorinated Alkyl Substances by LC-MSMS  n:2 Fluorotelomer sulfonic acids & Perfluoroalkane sulfonates (PFSAs) Method: LTM-ORG-2100 Per- and Polyfluorinated Alkyl Substances by LC-MSMS  Ammonia (as N) Melbourne Method: LTM-MCR-2100 Per- and Polyfluorinated Alkyl Substances by LC-MSMS  Ammonia (as N) Melbourne Melbourne Jul 12, 2017 28 Day  Method: LTM-INC-4010 Biochemical Oxygen Demand (BOD5) in Water Chemical Oxygen Demand (BOD-5 Day) Method: LTM-INC-4010 Biochemical Oxygen Demand (BOD5) in Water Chemical Oxygen Demand (COD) Method: LTM-INC-4020 Determination of COD in Water Chloride Melbourne Melbourne Melbourne Melbourne Jul 12, 2017 28 Day  Method: LTM-INC-4030 Nitrate (as N) Melbourne Jul 12, 2017 7 Day  Method: LTM-INC-4030 Nitrate (as N) Melbourne Jul 12, 2017 7 Day  Method: APHA 4500-NO3 Nitrate Nitrogen by FIA Nitrite (as N) Melbourne Melbourne Jul 12, 2017 7 Day  Method: LTM-INC-40709 ph in water by ISE Phosphate total (as P) Method: LTM-ING-EN-7090 ph in water by ISE Phosphorus reactive (as P) Method: APHA 4500-PO4 Method: APHA 4500- | Per- and Polyfluorinated Alkyl Substances (PFASs)                            |                        |                        |                       |
| Perfluoroalkane sulfonamides (PFASAs) Brisbane Jul 13, 2017 14 Day  - Method: LTM-CRG-2100 Per- and Polytluorinated Alkyl Substances by LC-MS/MS  Perfluoroalkane sulfonic acids & Perfluoroalkane sulfonates (PFSAs) Brisbane Jul 13, 2017 14 Day  - Method: LTM-CRG-2100 Per- and Polytluorinated Alkyl Substances by LC-MS/MS  n:2 Fluorotelomer sulfonic acids & Perfluoroalkane sulfonates (PFSAs) Brisbane Jul 13, 2017 14 Day  - Method: LTM-CRG-2100 Per- and Polytluorinated Alkyl Substances by LC-MS/MS  Ammonia (as N) Melbourne Jul 12, 2017 28 Day  - Method: APHA 4500-NI3 Ammonia Nitrogen by FIA  Biochemical Oxygen Demand (BOD-5 Day) Melbourne Jul 12, 2017 2 Day  - Method: LTM-INO-4010 Biochemical Oxygen Demand (BOD-5 In Water  Chemical Oxygen Demand (COD) Mater  Chemical Oxygen Demand (COD) Mater  Chloride Melbourne Jul 12, 2017 28 Days  - Method: LTM-INO-4020 Determination of COD in Water  Choloride Melbourne Jul 12, 2017 28 Day  - Method: LTM-INO-4030 Chioride by Discrete Analyser  Conductivity (at 25°C) Melbourne Jul 12, 2017 7 Day  - Method: APHA 4500-NO3 Nitrate Nitrogen by FIA  Nitrite (as N) Melbourne Jul 12, 2017 7 Day  - Method: APHA 4500-NO3 Nitrate Nitrogen by FIA  - Method: CAPHA 4500-NO3 PIA Nethodos Netho | Perfluoroalkyl carboxylic acids (PFCAs)                                      | Brisbane               | Jul 13, 2017           | 14 Day                |
| Perfluoroalkane sulfonic acids & Perfluoroalkane sulfonates (PFSAs) Brisbane Jul 13, 2017 14 Day  - Method: LTM-ORG-2100 Per- and Polyfluorinated Alkyl Substances by LC-MS/MS  n:2 Fluorotelomer sulfonic acids & Perfluoroalkane sulfonated Alkyl Substances by LC-MS/MS  n:2 Fluorotelomer sulfonic acids A Polyfluorinated Alkyl Substances by LC-MS/MS  Ammonia (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - Method: LTM-ORG-2100 Per- and Polyfluorinated Alkyl Substances by LC-MS/MS |                        |                        |                       |
| Perfluoroalkane sulfonic acids & Perfluoroalkane sulfonates (PFSAs)  - Method: LTM-ORG-2100 Per- and Polyfluorinated Alkyl Substances by LC-MS/MS  n:2 Fluorotelomer sulfonic acids  - Method: LTM-ORG-2100 Per- and Polyfluorinated Alkyl Substances by LC-MS/MS  Ammonia (as N)  - Method: APHA 4500-NH3 Ammonia Nitrogen by FIA  Biochemical Oxygen Demand (BOD-5 Day)  - Method: LTM-INO-4010 Biochemical Oxygen Demand (BOD5) in Water  Chemical Oxygen Demand (COD)  - Method: LTM-INO-4220 Determination of COD in Water  Chloride  - Method: LTM-INO-4020 Determination of COD in Water  Chloride  - Method: LTM-INO-4030 Chloride by Discrete Analyser  Conductivity (at 25°C)  - Method: APHA 4500-NO3 Nitrate Nitrogen by FIA  Nitrite (as N)  - Method: APHA 4500-NO2 Nitrite Nitrogen by FIA  Nitrite (as N)  - Method: APHA 4500-NO2 Nitrite Nitrogen by FIA  Ph  - Method: APHA 4500-NO2 Nitrite Nitrogen by FIA  Ph  - Method: APHA 4500-PO2 Phosphorous  Phosphorus reactive (as P)  - Method: APHA 4500-PO2  - Method: LTM-INO-GPP  - Method: APHA 4500-PO2  - Method: APHA 4500-PO2  - Method: APHA 4500-PO2  - Method: APHA 4500-PO2  - Method: LTM-INO-GPP  - Method: APHA 4500-PO2  - Method: APHA 4500-PO3  - Method: APHA 4500-PO2  - Method: APHA 4500-PO3  - Method: | Perfluoroalkane sulfonamides (PFASAs)                                        | Brisbane               | Jul 13, 2017           | 14 Day                |
| - Method: LTM-ORG-2100 Per- and Polyfluorinated Alkyl Substances by LC-MS/MS  - Method: LTM-ORG-2100 Per- and Polyfluorinated Alkyl Substances by LC-MS/MS  Ammonia (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - Method: LTM-ORG-2100 Per- and Polyfluorinated Alkyl Substances by LC-MS/MS |                        |                        |                       |
| ### Risbane   Jul 13, 2017   14 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Perfluoroalkane sulfonic acids & Perfluoroalkane sulfonates (PFSAs)          | Brisbane               | Jul 13, 2017           | 14 Day                |
| Ammonia (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - Method: LTM-ORG-2100 Per- and Polyfluorinated Alkyl Substances by LC-MS/MS |                        |                        |                       |
| Ammonia (as N) Melbourne Jul 12, 2017 28 Day  - Method: APHA 4500-NH3 Ammonia Nitrogen by FIA Biochemical Oxygen Demand (BOD-5 Day) Melbourne Jul 12, 2017 2 Day  - Method: LTM-INO-4010 Biochemical Oxygen Demand (BOD5) in Water Chemical Oxygen Demand (COD) Melbourne Jul 12, 2017 28 Days  - Method: LTM-INO-4220 Determination of COD in Water Chloride Melbourne Jul 12, 2017 28 Day  - Method: LTM-INO-4990 Chloride by Discrete Analyser Conductivity (at 25°C) Melbourne Jul 12, 2017 28 Day  - Method: LTM-INO-4090 Chloride by Discrete Analyser Conductivity (at 25°C) Melbourne Jul 12, 2017 28 Day  - Method: APHA 4500-NO3 Nitrate Nitrogen by FIA Nitrate (as N) Melbourne Jul 12, 2017 7 Day  - Method: APHA 4500-NO3 Nitrate Nitrogen by FIA Nitrite (as N) Melbourne Jul 12, 2017 0 Hours  - Method: LTM-GEN-7090 pH in water by ISE Phosphate total (as P) Melbourne Jul 12, 2017 28 Day  - Method: APHA 4500-PE. Phosphorous Phosphorus reactive (as P) Melbourne Jul 12, 2017 2 Day  - Method: APHA4500-PO4 Sulphate (as SO4) Melbourne Jul 12, 2017 2 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n:2 Fluorotelomer sulfonic acids                                             | Brisbane               | Jul 13, 2017           | 14 Day                |
| Method: APHA 4500-NH3 Ammonia Nitrogen by FIA   Biochemical Oxygen Demand (BOD-5 Day)   Method: LTM-INO-4010 Biochemical Oxygen Demand (BOD5) in Water   Chemical Oxygen Demand (COD)   Method: LTM-INO-4020 Determination of COD in Water   Chloride   Melbourne   Jul 12, 2017   28 Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - Method: LTM-ORG-2100 Per- and Polyfluorinated Alkyl Substances by LC-MS/MS |                        |                        |                       |
| Biochemical Oxygen Demand (BOD-5 Day)         Melbourne         Jul 12, 2017         2 Day           - Method: LTM-INO-4010 Biochemical Oxygen Demand (BOD5) in Water         Melbourne         Jul 12, 2017         28 Days           - Method: LTM-INO-4220 Determination of COD in Water         Melbourne         Jul 12, 2017         28 Days           - Method: LTM-INO-4990 Chloride by Discrete Analyser         Welbourne         Jul 12, 2017         28 Day           - Method: LTM-INO-4090 Chloride by Discrete Analyser         Melbourne         Jul 12, 2017         28 Day           - Method: LTM-INO-4090 Chloride by Discrete Analyser         Melbourne         Jul 12, 2017         28 Day           - Method: LTM-INO-4090 Chloride by Discrete Analyser         Melbourne         Jul 12, 2017         7 Day           - Method: LTM-INO-4090 Chloride by Discrete Analyser         Melbourne         Jul 12, 2017         7 Day           - Method: LTM-INO-4090 Chloride by Discrete Analyser         Melbourne         Jul 12, 2017         2 Day           - Method: APHA 4500-NO3 Nitrate Nitrogen by FIA         Melbourne         Jul 12, 2017         0 Hours           - Method: APHA 4500-NO2 Nitrite Nitrogen by FIA         Melbourne         Jul 12, 2017         2 B Day           - Method: LTM-GEN-7090 pH in water by ISE         Melbourne         Jul 12, 2017         2 Day           - Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ammonia (as N)                                                               | Melbourne              | Jul 12, 2017           | 28 Day                |
| - Method: LTM-INO-4010 Biochemical Oxygen Demand (BOD5) in Water Chemical Oxygen Demand (COD) Melbourne Jul 12, 2017 28 Days - Method: LTM-INO-4220 Determination of COD in Water Chloride Melbourne Jul 12, 2017 28 Day - Method: LTM-INO-4090 Chloride by Discrete Analyser Conductivity (at 25°C) Melbourne Jul 12, 2017 28 Day - Method: LTM-INO-4090 Chloride by Discrete Analyser Conductivity (at 25°C) Melbourne Jul 12, 2017 7 Day - Method: LTM-INO-4030 Nitrate (as N) Melbourne Jul 12, 2017 7 Day - Method: APHA 4500-NO3 Nitrate Nitrogen by FIA Nitrite (as N) Melbourne Jul 12, 2017 2 Day - Method: APHA 4500-NO2 Nitrite Nitrogen by FIA PH Melbourne Melbourne Jul 12, 2017 0 Hours - Method: LTM-GEN-7090 pH in water by ISE Phosphate total (as P) Melbourne Melbourne Jul 12, 2017 2 B Day - Method: APHA 4500-P E. Phosphorous Phosphorus reactive (as P) Melbourne Melbourne Jul 12, 2017 2 Day - Method: APHA4500-PO4 Sulphate (as SO4) Melbourne Jul 12, 2017 2 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - Method: APHA 4500-NH3 Ammonia Nitrogen by FIA                              |                        |                        |                       |
| Chemical Oxygen Demand (COD)  - Method: LTM-INO-4220 Determination of COD in Water  Chloride  Melbourne  Melbourne  Jul 12, 2017  28 Days  - Method: LTM-INO-4090 Chloride by Discrete Analyser  Conductivity (at 25°C)  Melbourne  Jul 12, 2017  28 Day  - Method: LTM-INO-4090 Chloride by Discrete Analyser  Conductivity (at 25°C)  Melbourne  Jul 12, 2017  28 Day  - Method: LTM-INO-4090  Nitrate (as N)  Melbourne  Jul 12, 2017  7 Day  - Method: APHA 4500-NO3 Nitrate Nitrogen by FIA  Nitrite (as N)  Melbourne  Jul 12, 2017  2 Day  - Method: APHA 4500-NO2 Nitrite Nitrogen by FIA  pH  Melbourne  Melbourne  Jul 12, 2017  0 Hours  - Method: LTM-GEN-7090 pH in water by ISE  Phosphate total (as P)  Melbourne  Melbourne  Jul 12, 2017  28 Day  - Method: APHA 4500-P E. Phosphorous  Phosphorus reactive (as P)  Melbourne  Melbourne  Jul 12, 2017  2 Day  - Method: APHA4500-PO4  Sulphate (as SO4)  Melbourne  Jul 12, 2017  2 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Biochemical Oxygen Demand (BOD-5 Day)                                        | Melbourne              | Jul 12, 2017           | 2 Day                 |
| - Method: LTM-INO-4220 Determination of COD in Water Chloride Melbourne Jul 12, 2017 28 Day - Method: LTM-INO-4090 Chloride by Discrete Analyser Conductivity (at 25°C) Melbourne Jul 12, 2017 28 Day - Method: LTM-INO-4030 Nitrate (as N) Melbourne Jul 12, 2017 7 Day - Method: APHA 4500-NO3 Nitrate Nitrogen by FIA Nitrite (as N) Melbourne Jul 12, 2017 2 Day - Method: APHA 4500-NO2 Nitrite Nitrogen by FIA PH Melbod: APHA 4500-NO2 Nitrite Nitrogen by FIA PH Melbod: LTM-GEN-7090 pH in water by ISE Phosphate total (as P) Melbourne Jul 12, 2017 28 Day - Method: APHA 4500-P E. Phosphorous Phosphorus reactive (as P) Melbourne Jul 12, 2017 2 Day - Method: APHA 4500-PO4 Sulphate (as SO4) Melbourne Jul 12, 2017 2 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - Method: LTM-INO-4010 Biochemical Oxygen Demand (BOD5) in Water             |                        |                        |                       |
| Chloride       Melbourne       Jul 12, 2017       28 Day         - Method: LTM-INO-4090 Chloride by Discrete Analyser       Welbourne       Jul 12, 2017       28 Day         - Method: LTM-INO-4030       Melbourne       Jul 12, 2017       7 Day         - Method: APHA 4500-NO3 Nitrate Nitrogen by FIA       Melbourne       Jul 12, 2017       2 Day         - Method: APHA 4500-NO2 Nitrite Nitrogen by FIA       Melbourne       Jul 12, 2017       0 Hours         - Method: LTM-GEN-7090 pH in water by ISE       Melbourne       Jul 12, 2017       28 Day         - Method: APHA 4500-PE. Phosphorous       Melbourne       Jul 12, 2017       2 Day         - Method: APHA 4500-PE. Phosphorous       Melbourne       Jul 12, 2017       2 Day         - Method: APHA4500-PO4       Melbourne       Jul 12, 2017       2 Day         - Method: APHA4500-PO4       Melbourne       Jul 12, 2017       2 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chemical Oxygen Demand (COD)                                                 | Melbourne              | Jul 12, 2017           | 28 Days               |
| - Method: LTM-INO-4090 Chloride by Discrete Analyser  Conductivity (at 25°C) Melbourne Jul 12, 2017 28 Day  - Method: LTM-INO-4030  Nitrate (as N) Melbourne Jul 12, 2017 7 Day  - Method: APHA 4500-NO3 Nitrate Nitrogen by FIA  Nitrite (as N) Melbourne Jul 12, 2017 2 Day  - Method: APHA 4500-NO2 Nitrite Nitrogen by FIA  pH Melbourne Jul 12, 2017 0 Hours  - Method: LTM-GEN-7090 pH in water by ISE  Phosphate total (as P) Melbourne Jul 12, 2017 28 Day  - Method: APHA 4500-P E. Phosphorous  Phosphorus reactive (as P) Melbourne Jul 12, 2017 2 Day  - Method: APHA 4500-PO4  Sulphate (as SO4) Melbourne Jul 12, 2017 28 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - Method: LTM-INO-4220 Determination of COD in Water                         |                        |                        |                       |
| Conductivity (at 25°C)       Melbourne       Jul 12, 2017       28 Day         - Method: LTM-INO-4030       Melbourne       Jul 12, 2017       7 Day         - Method: APHA 4500-NO3 Nitrate Nitrogen by FIA       Melbourne       Jul 12, 2017       2 Day         - Method: APHA 4500-NO2 Nitrite Nitrogen by FIA       Melbourne       Jul 12, 2017       0 Hours         - Method: LTM-GEN-7090 pH in water by ISE       Melbourne       Jul 12, 2017       28 Day         - Method: APHA 4500-P E. Phosphorous       Melbourne       Jul 12, 2017       2 Day         - Method: APHA 4500-P E. Phosphorous       Melbourne       Jul 12, 2017       2 Day         - Method: APHA4500-PO4       Melbourne       Jul 12, 2017       2 Day         - Method: APHA4500-PO4       Melbourne       Jul 12, 2017       2 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Chloride                                                                     | Melbourne              | Jul 12, 2017           | 28 Day                |
| - Method: LTM-INO-4030       Melbourne       Jul 12, 2017       7 Day         - Method: APHA 4500-NO3 Nitrate Nitrogen by FIA       Melbourne       Jul 12, 2017       2 Day         - Method: APHA 4500-NO2 Nitrite Nitrogen by FIA       Melbourne       Jul 12, 2017       0 Hours         - Method: LTM-GEN-7090 pH in water by ISE       Melbourne       Jul 12, 2017       28 Day         - Method: APHA 4500-P E. Phosphorous       Melbourne       Jul 12, 2017       2 Day         - Method: APHA4500-PO4       Melbourne       Jul 12, 2017       2 Day         Sulphate (as SO4)       Melbourne       Jul 12, 2017       28 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - Method: LTM-INO-4090 Chloride by Discrete Analyser                         |                        |                        |                       |
| Nitrate (as N) - Method: APHA 4500-NO3 Nitrate Nitrogen by FIA Nitrite (as N) - Method: APHA 4500-NO2 Nitrite Nitrogen by FIA  PH - Method: APHA 4500-NO2 Nitrite Nitrogen by FIA  PH - Method: LTM-GEN-7090 pH in water by ISE Phosphate total (as P) - Method: APHA 4500-P E. Phosphorous Phosphorus reactive (as P) - Method: APHA 4500-PO4 Sulphate (as SO4)  Melbourne  Melbourne  Jul 12, 2017 28 Day - Method: APHA4500-PO4 Sulphate (as SO4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Conductivity (at 25°C)                                                       | Melbourne              | Jul 12, 2017           | 28 Day                |
| Nitrite (as N) Melbourne Jul 12, 2017 2 Day  - Method: APHA 4500-NO2 Nitrite Nitrogen by FIA pH Melbourne Jul 12, 2017 0 Hours  - Method: LTM-GEN-7090 pH in water by ISE Phosphate total (as P) Melbourne Jul 12, 2017 28 Day  - Method: APHA 4500-P E. Phosphorous Phosphorus reactive (as P) Melbourne Jul 12, 2017 2 Day  - Method: APHA4500-PO4 Sulphate (as SO4) Melbourne Jul 12, 2017 28 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - Method: LTM-INO-4030                                                       |                        |                        |                       |
| Nitrite (as N)  - Method: APHA 4500-NO2 Nitrite Nitrogen by FIA pH  - Method: LTM-GEN-7090 pH in water by ISE Phosphate total (as P)  - Method: APHA 4500-P E. Phosphorous Phosphorus reactive (as P)  - Method: APHA4500-PO4 Sulphate (as SO4)  Melbourne  Melbourne  Jul 12, 2017  28 Day  Melbourne  Jul 12, 2017  2 Day  Melbourne  Jul 12, 2017  2 Day  Melbourne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nitrate (as N)                                                               | Melbourne              | Jul 12, 2017           | 7 Day                 |
| - Method: APHA 4500-NO2 Nitrite Nitrogen by FIA pH Melbourne Jul 12, 2017 0 Hours  - Method: LTM-GEN-7090 pH in water by ISE Phosphate total (as P) Melbourne Jul 12, 2017 28 Day  - Method: APHA 4500-P E. Phosphorous Phosphorus reactive (as P) Melbourne Jul 12, 2017 2 Day  - Method: APHA4500-PO4 Sulphate (as SO4) Melbourne Jul 12, 2017 28 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Method: APHA 4500-NO3 Nitrate Nitrogen by FIA                              |                        |                        |                       |
| PH Melbourne Jul 12, 2017 0 Hours  - Method: LTM-GEN-7090 pH in water by ISE  Phosphate total (as P) Melbourne Jul 12, 2017 28 Day  - Method: APHA 4500-P E. Phosphorous  Phosphorus reactive (as P) Melbourne Jul 12, 2017 2 Day  - Method: APHA4500-PO4  Sulphate (as SO4) Melbourne Jul 12, 2017 28 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nitrite (as N)                                                               | Melbourne              | Jul 12, 2017           | 2 Day                 |
| - Method: LTM-GEN-7090 pH in water by ISE  Phosphate total (as P) Melbourne Jul 12, 2017 28 Day  - Method: APHA 4500-P E. Phosphorous  Phosphorus reactive (as P) Melbourne Jul 12, 2017 2 Day  - Method: APHA4500-PO4  Sulphate (as SO4) Melbourne Jul 12, 2017 28 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Method: APHA 4500-NO2 Nitrite Nitrogen by FIA                              |                        |                        |                       |
| Phosphate total (as P)  - Method: APHA 4500-P E. Phosphorous  Phosphorus reactive (as P)  - Method: APHA4500-PO4  Sulphate (as SO4)  Melbourne  Jul 12, 2017  28 Day  28 Day  Melbourne  Jul 12, 2017  28 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pH                                                                           | Melbourne              | Jul 12, 2017           | 0 Hours               |
| - Method: APHA 4500-P E. Phosphorous  Phosphorus reactive (as P)  - Method: APHA4500-PO4  Sulphate (as SO4)  Melbourne  Jul 12, 2017  2 Day  Melbourne  Jul 12, 2017  28 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - Method: LTM-GEN-7090 pH in water by ISE                                    |                        |                        |                       |
| Phosphorus reactive (as P)  - Method: APHA4500-PO4  Sulphate (as SO4)  Melbourne  Jul 12, 2017  2 Day  Melbourne  Jul 12, 2017  28 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Phosphate total (as P)                                                       | Melbourne              | Jul 12, 2017           | 28 Day                |
| - Method: APHA4500-PO4 Sulphate (as SO4) Melbourne Jul 12, 2017 28 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - Method: APHA 4500-P E. Phosphorous                                         |                        |                        |                       |
| Sulphate (as SO4) Melbourne Jul 12, 2017 28 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phosphorus reactive (as P)                                                   | Melbourne              | Jul 12, 2017           | 2 Day                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Method: APHA4500-PO4                                                       |                        |                        |                       |
| - Method: LTM-INO-4110 Sulfate by Discrete Analyser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sulphate (as SO4)                                                            | Melbourne              | Jul 12, 2017           | 28 Day                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Method: LTM-INO-4110 Sulfate by Discrete Analyser                          |                        |                        |                       |

Report Number: 553774-W



| Description                                                        | Testing Site | Extracted    | Holding Time |
|--------------------------------------------------------------------|--------------|--------------|--------------|
| Total Dissolved Solids                                             | Melbourne    | Jul 12, 2017 | 7 Day        |
| - Method: LM-LTM-INO-4110 (Total Dissolved Solids @ 178°C - 182°C) |              |              |              |
| Total Organic Carbon                                               | Melbourne    | Jul 13, 2017 | 28 Day       |
| - Method: APHA 5310B Total Organic Carbon                          |              |              |              |
| Alkalinity (speciated)                                             | Melbourne    | Jul 12, 2017 | 14 Day       |
| - Method: APHA 2320 Alkalinity by Titration                        |              |              |              |
| Hardness Set                                                       |              |              |              |
| Calcium                                                            | Melbourne    | Jul 12, 2017 | 180 Day      |
| - Method: LTM-MET-3010 Alkali Metals, S, Si and P by ICP-AES       |              |              |              |
| Magnesium                                                          | Melbourne    | Jul 12, 2017 | 180 Day      |
| - Method: LTM-MET-3010 Alkali Metals, S, Si and P by ICP-AES       |              |              |              |
| Alkali Metals                                                      | Melbourne    | Jul 12, 2017 | 180 Day      |
| - Method: USEPA 6010 Alkali Metals                                 |              |              |              |
| Heavy Metals (filtered)                                            | Melbourne    | Jul 12, 2017 | 180 Day      |
| - Method: LTM-MET-3040 Metals in Waters by ICP-MS                  |              |              |              |
| Metals M8 filtered                                                 | Melbourne    | Jul 12, 2017 | 28 Day       |
| - Method: LTM-MET-3040 Metals in Waters by ICP-MS                  |              |              |              |
| Hardness mg equivalent CaCO3/L                                     | Melbourne    | Jul 12, 2017 | 28 Day       |
| - Method: APHA 2340B Hardness by Calculation                       |              |              |              |
| Total Nitrogen Set (as N)                                          |              |              |              |
| Nitrate & Nitrite (as N)                                           | Melbourne    | Jul 12, 2017 | 28 Day       |
| - Method: APHA 4500-NO3/NO2 Nitrate-Nitrite Nitrogen by FIA        |              |              |              |
| Total Kjeldahl Nitrogen (as N)                                     | Melbourne    | Jul 12, 2017 | 7 Day        |
| - Method: APHA 4500 TKN                                            |              |              |              |



ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 18217

Page 11 of 24

Company Name: Golder Associates Pty Ltd (WA) Order No.: Received: Jul 10, 2017 2:58 PM

 Address:
 Level 3, 1 Havelock Street
 Report #:
 553774
 Due:
 Jul 17, 2017

 West Perth
 Phone:
 08 9213 7600
 Priority:
 5 Day

WA 6005 Fax: 03 8862 3501 Contact Name: Sarah Garvey

**Project Name:** 

Project ID: 1779954

|      |                  |                 |                  |        |             |                      |                |                                  |                                       |                               |                              |          |                        |                                 |                |                |    |                        | E                          | urof      | ins    | mg                | t An                        | alyti                  | cal                  | Ser                              | vice               | s M                | ana                       | ger          | : Ro                 | obert        | Joh      | ınsto                                   | on                            |                                           |
|------|------------------|-----------------|------------------|--------|-------------|----------------------|----------------|----------------------------------|---------------------------------------|-------------------------------|------------------------------|----------|------------------------|---------------------------------|----------------|----------------|----|------------------------|----------------------------|-----------|--------|-------------------|-----------------------------|------------------------|----------------------|----------------------------------|--------------------|--------------------|---------------------------|--------------|----------------------|--------------|----------|-----------------------------------------|-------------------------------|-------------------------------------------|
|      |                  | Sa              | mple Detail      |        |             | Aluminium (filtered) | Ammonia (as N) | Bicarbonate Alkalinity (as HCO3) | Biochemical Oxygen Demand (BOD-5 Day) | Carbonate Alkalinity (as CO3) | Chemical Oxygen Demand (COD) | Chloride | Conductivity (at 25°C) | Hydroxide Alkalinity (as CaCO3) | Nitrate (as N) | Nitrite (as N) | pΗ | Phosphate total (as P) | Phosphorus reactive (as P) | Potassium | Sodium | Sulphate (as SO4) | Total Alkalinity (as CaCO3) | Total Dissolved Solids | Total Organic Carbon | Polycyclic Aromatic Hydrocarbons | Metals M8 filtered | Phenols (IWRG 621) | Total Nitrogen Set (as N) | Hardness Set | BTEX and Naphthalene | Moisture Set | 9        | NSW DECC - Waste Classification Table 1 | (PFASs) BTEX and Volatile TRH | Per- and Polyfluorinated Alkyl Substances |
| Melk | ourne Laborate   | ory - NATA Site | # 1254 & 142     | 271    |             | Х                    | Х              | Х                                | Х                                     | Х                             | Х                            | Х        | Х                      | x >                             | κ x            | : X            | Х  | Х                      | Х                          | Х         | Х      | Х                 | Х                           | Х                      | Х                    | Х                                | Х                  | Х                  | Х                         | Х            | Х                    | Х            | Х        | Х                                       | Х                             |                                           |
| Sydi | ney Laboratory   | - NATA Site # 1 | 8217             |        |             |                      |                |                                  |                                       |                               |                              |          |                        |                                 |                |                |    |                        |                            |           |        |                   |                             |                        |                      |                                  |                    |                    |                           |              |                      |              |          |                                         |                               |                                           |
| Bris | bane Laborator   | y - NATA Site#  | 20794            |        |             |                      |                |                                  |                                       |                               |                              |          |                        |                                 |                |                |    |                        |                            |           |        |                   |                             |                        |                      |                                  |                    |                    |                           |              |                      |              |          |                                         | >                             | X                                         |
| Pert | h Laboratory - N | NATA Site # 182 | 17               |        |             |                      |                |                                  |                                       |                               |                              |          |                        |                                 |                |                |    |                        |                            |           |        |                   |                             |                        |                      |                                  |                    |                    |                           |              |                      | Ш            |          |                                         |                               |                                           |
| Exte | rnal Laboratory  | /               |                  |        |             |                      |                |                                  |                                       |                               |                              |          |                        |                                 |                |                |    |                        |                            |           |        |                   |                             |                        |                      |                                  |                    |                    |                           |              |                      | Ш            |          |                                         |                               |                                           |
| No   | Sample ID        | Sample Date     | Sampling<br>Time | Matrix | LAB ID      |                      |                |                                  |                                       |                               |                              |          |                        |                                 |                |                |    |                        |                            |           |        |                   |                             |                        |                      |                                  |                    |                    |                           | ,            |                      | Ш            |          |                                         |                               |                                           |
| 1    | Q00185-1         | Jul 10, 2017    |                  | Water  | M17-JI11959 | Х                    | Х              | Х                                | Х                                     | Х                             | Х                            | Х        | Х                      | x >                             | κ x            | : x            | Х  | Х                      | Х                          | Х         | Х      | Х                 | Х                           | Х                      | Х                    | Х                                | Х                  | Х                  | Х                         | Х            | Х                    |              | Х        |                                         | >                             | X                                         |
| 2    | Q00185-2         | Jul 10, 2017    |                  | Water  | M17-JI11960 | Х                    | Х              | Х                                | Х                                     | Х                             | Х                            | Х        | _                      | _                               | κ x            | : x            | Х  | X                      | Х                          | Х         | Х      | Х                 | Х                           | х                      | Х                    | Х                                | Х                  | Х                  | Х                         | Х            | Х                    | $\sqcup$     | Х        | $\perp$                                 | >                             | X                                         |
| 3    | Q00185-3         | Jul 10, 2017    |                  | Water  | M17-JI11961 | Х                    | Х              | Х                                | Х                                     | Х                             | Х                            | х        | Х                      | x >                             | κ x            | : X            | Х  | X                      | Х                          | Х         | Х      | Х                 | Х                           | х                      | х                    | Х                                | Х                  | Х                  | Х                         | Х            | Х                    | $\sqcup$     | Х        | $\perp$                                 | >                             | X                                         |
| 4    | Q00185-4         | Jul 10, 2017    |                  | Water  | M17-JI11962 | Х                    | _              | Х                                | Х                                     | -                             | Х                            | Х        |                        | -+                              | K X            | $\overline{}$  | +  | X                      | Х                          | Х         | Х      | Х                 |                             | _                      | Х                    | Х                                | Х                  | Х                  | Х                         | Х            | Х                    | _            | Х        | _                                       | >                             | X                                         |
| 5    | Q00185-5         | Jul 10, 2017    |                  | Water  | M17-JI11963 | Х                    | X              | Х                                | Х                                     | Х                             | Х                            | Х        |                        | -+                              | K X            | $\overline{}$  | Х  | X                      | Х                          | Х         | Х      | Х                 | Х                           | х                      | Х                    | Х                                | Х                  | Х                  | Х                         | Х            | Х                    | _            | Х        |                                         | >                             | X                                         |
| 6    | Q00185-6         | Jul 10, 2017    |                  | Water  | M17-JI11964 | Х                    | Х              | Х                                | Х                                     | Х                             | Х                            | Х        | Х                      | x >                             | K X            | : X            | X  | X                      | Х                          | Х         | Х      | Χ                 | Х                           | Х                      | Х                    | Х                                | Х                  | Х                  | Х                         | Х            | Χ                    | $\sqcup$     | Х        | $\perp$                                 | -                             | X                                         |
| 7    | Q00185-7         | Jul 10, 2017    |                  | Water  | M17-JI11965 | _                    |                |                                  |                                       | _                             |                              |          | _                      |                                 |                | _              | _  | _                      |                            |           |        |                   |                             |                        | _                    |                                  |                    |                    | -                         |              |                      | $\sqcup$     | $\dashv$ | -+                                      | Х                             | _                                         |
| 8    | Q00185-8         | Jul 10, 2017    |                  | Soil   | M17-JI11966 |                      |                |                                  |                                       |                               |                              |          |                        |                                 |                | _              | -  | _                      |                            |           |        |                   |                             |                        |                      |                                  |                    |                    |                           |              |                      | Х            |          | Х                                       |                               | _                                         |
| Test | Counts           |                 |                  |        |             | 6                    | 6              | 6                                | 6                                     | 6                             | 6                            | 6        | 6                      | 6 (                             | 6              | 6              | 6  | 6                      | 6                          | 6         | 6      | 6                 | 6                           | 6                      | 6                    | 6                                | 6                  | 6                  | 6                         | 6            | 6                    | 1            | 6        | 1                                       | 1 6                           | 6                                         |

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN : 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 553774-W



#### **Internal Quality Control Review and Glossary**

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

\*\*NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per kilogram
 mg/L: milligrams per litre

 ug/L: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100mL: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

**Terms** 

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

#### QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

  Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



### **Quality Control Results**

| Test                                                | Units  | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-----------------------------------------------------|--------|----------|----------------------|----------------|--------------------|
| Method Blank                                        |        |          |                      |                |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fraction | าร     |          |                      |                |                    |
| TRH C6-C9                                           | mg/L   | < 0.02   | 0.02                 | Pass           |                    |
| TRH C10-C14                                         | mg/L   | < 0.05   | 0.05                 | Pass           |                    |
| TRH C15-C28                                         | mg/L   | < 0.1    | 0.1                  | Pass           |                    |
| TRH C29-C36                                         | mg/L   | < 0.1    | 0.1                  | Pass           |                    |
| Method Blank                                        |        |          |                      |                |                    |
| BTEX                                                |        |          |                      |                |                    |
| Benzene                                             | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Toluene                                             | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Ethylbenzene                                        | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| m&p-Xylenes                                         | mg/L   | < 0.002  | 0.002                | Pass           |                    |
| o-Xylene                                            | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Xylenes - Total                                     | mg/L   | < 0.003  | 0.003                | Pass           |                    |
| Method Blank                                        |        |          |                      |                |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fraction | ns     |          |                      |                |                    |
| Naphthalene                                         | mg/L   | < 0.01   | 0.01                 | Pass           |                    |
| TRH C6-C10                                          | mg/L   | < 0.02   | 0.02                 | Pass           |                    |
| TRH >C10-C16                                        | mg/L   | < 0.05   | 0.05                 | Pass           |                    |
| TRH >C16-C34                                        | mg/L   | < 0.1    | 0.1                  | Pass           |                    |
| TRH >C34-C40                                        | mg/L   | < 0.1    | 0.1                  | Pass           |                    |
| Method Blank                                        | 1 3    |          |                      |                |                    |
| Polycyclic Aromatic Hydrocarbons                    |        |          |                      |                |                    |
| Acenaphthene                                        | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Acenaphthylene                                      | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Anthracene                                          | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Benz(a)anthracene                                   | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Benzo(a)pyrene                                      | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Benzo(b&i)fluoranthene                              | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Benzo(g.h.i)perylene                                | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Benzo(k)fluoranthene                                | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Chrysene                                            | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Dibenz(a.h)anthracene                               | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Fluoranthene                                        | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Fluorene                                            | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Indeno(1.2.3-cd)pyrene                              | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Naphthalene                                         | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Phenanthrene                                        | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Pyrene                                              | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Method Blank                                        | i mg/L | 1 0.001  | 0.001                | 1 400          |                    |
| Phenois (Halogenated)                               |        |          |                      | T T            |                    |
| 2-Chlorophenol                                      | mg/L   | < 0.003  | 0.003                | Pass           |                    |
| 2.4-Dichlorophenol                                  | mg/L   | < 0.003  | 0.003                | Pass           |                    |
| 2.4.5-Trichlorophenol                               | mg/L   | < 0.003  | 0.003                | Pass           |                    |
| 2.4.6-Trichlorophenol                               | mg/L   | < 0.01   | 0.01                 | Pass           |                    |
| 2.6-Dichlorophenol                                  | mg/L   | < 0.003  | 0.003                | Pass           |                    |
| 4-Chloro-3-methylphenol                             | mg/L   | < 0.003  | 0.003                | Pass           |                    |
| Pentachlorophenol                                   | mg/L   | < 0.01   | 0.01                 | Pass           |                    |
| Tetrachlorophenols - Total                          |        | < 0.03   | 0.03                 | Pass           |                    |
| Method Blank                                        | mg/L   | _ \ 0.03 | 1 0.03               | 1 033          |                    |
| Phenols (non-Halogenated)                           |        | T        |                      |                |                    |
|                                                     | m ~ /I | -01      | 0.4                  | Poss           |                    |
| 2-Cyclohexyl-4.6-dinitrophenol                      | mg/L   | < 0.1    | 0.1                  | Pass           |                    |



| Test                                                              | Units        | Result 1                   | Acceptance<br>Limits | Pass<br>Limits       | Qualifying<br>Code |
|-------------------------------------------------------------------|--------------|----------------------------|----------------------|----------------------|--------------------|
| 2-Methyl-4.6-dinitrophenol                                        | mg/L         | < 0.03                     | 0.03                 | Pass                 |                    |
| 2-Methylphenol (o-Cresol)                                         | mg/L         | < 0.003                    | 0.003                | Pass                 |                    |
| 2-Nitrophenol                                                     | mg/L         | < 0.01                     | 0.01                 | Pass                 |                    |
| 2.4-Dimethylphenol                                                | mg/L         | < 0.003                    | 0.003                | Pass                 |                    |
| 2.4-Dinitrophenol                                                 | mg/L         | < 0.03                     | 0.03                 | Pass                 |                    |
| 3&4-Methylphenol (m&p-Cresol)                                     | mg/L         | < 0.006                    | 0.006                | Pass                 |                    |
| 4-Nitrophenol                                                     | mg/L         | < 0.03                     | 0.03                 | Pass                 |                    |
| Dinoseb                                                           | mg/L         | < 0.1                      | 0.1                  | Pass                 |                    |
| Phenol                                                            | mg/L         | < 0.003                    | 0.003                | Pass                 |                    |
| Method Blank                                                      | g, =         | 10.000                     |                      | 1 466                |                    |
| Perfluoroalkyl carboxylic acids (PFCAs)                           |              |                            |                      |                      |                    |
| Perfluorobutanoic acid (PFBA)                                     | ug/L         | < 0.05                     | 0.05                 | Pass                 |                    |
| Perfluoropentanoic acid (PFPeA)                                   | ug/L         | < 0.01                     | 0.01                 | Pass                 |                    |
| Perfluorohexanoic acid (PFHxA)                                    | ug/L         | < 0.01                     | 0.01                 | Pass                 |                    |
| Perfluoroheptanoic acid (PFHpA)                                   | ug/L         | < 0.01                     | 0.01                 | Pass                 |                    |
| Perfluorooctanoic acid (PFOA)                                     | ug/L         | < 0.01                     | 0.01                 | Pass                 |                    |
| Perfluorononanoic acid (PFNA)                                     | ug/L         | < 0.01                     | 0.01                 | Pass                 |                    |
| Perfluorodecanoic acid (PFDA)                                     | ug/L<br>ug/L | < 0.01                     | 0.01                 | Pass                 |                    |
| Perfluoroundecanoic acid (PFUnA)                                  | ug/L         | < 0.01                     | 0.01                 | Pass                 |                    |
| Perfluorododecanoic acid (FFDoA)                                  | ug/L         | < 0.01                     | 0.01                 | Pass                 |                    |
| Perfluorotridecanoic acid (PFTrDA)                                |              | < 0.01                     | 0.01                 | Pass                 |                    |
| Perfluorotetradecanoic acid (PFTeDA)                              | ug/L         | < 0.01                     | 0.01                 | Pass                 |                    |
| Method Blank                                                      | ug/L         | < 0.01                     | 0.01                 | Fass                 |                    |
| Perfluoroalkane sulfonamides (PFASAs)                             |              | Т                          | T                    |                      |                    |
| Perfluoroctane sulfonamide (FOSA)                                 | /I           | .005                       | 0.05                 | Door                 |                    |
| ` ′                                                               | ug/L         | < 0.05                     | 0.05<br>0.05         | Pass                 |                    |
| N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)                 | ug/L         | < 0.05                     |                      | Pass                 |                    |
| N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)                  | ug/L         | < 0.05                     | 0.05                 | Pass                 |                    |
| 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-<br>MeFOSE) | ug/L         | < 0.05                     | 0.05                 | Pass                 |                    |
| 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)      | ug/L         | < 0.05                     | 0.05                 | Pass                 |                    |
| N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)         | ug/L         | < 0.05                     | 0.05                 | Pass                 |                    |
| N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)        | ug/L         | < 0.05                     | 0.05                 | Pass                 |                    |
| Method Blank                                                      |              | <u> </u>                   |                      |                      |                    |
| Perfluoroalkane sulfonic acids & Perfluoroalkane sulfonates       | (PFSAs)      |                            |                      |                      |                    |
| Perfluorobutanesulfonic acid (PFBS)                               | ug/L         | < 0.01                     | 0.01                 | Pass                 |                    |
| Perfluoropentanesulfonic acid (PFPeS)                             | ug/L         | < 0.01                     | 0.01                 | Pass                 |                    |
| Perfluorohexanesulfonic acid (PFHxS)                              | ug/L         | < 0.01                     | 0.01                 | Pass                 |                    |
| Perfluoroheptanesulfonic acid (PFHpS)                             | ug/L         | < 0.01                     | 0.01                 | Pass                 |                    |
| Perfluorooctanesulfonic acid (PFOS)                               | ug/L         | < 0.01                     | 0.01                 | Pass                 |                    |
| Perfluorodecanesulfonic acid (PFDS)                               | ug/L         | < 0.01                     | 0.01                 | Pass                 |                    |
| Method Blank                                                      | <u> </u>     | 1 0.01                     | 0.01                 | 1 466                |                    |
| n:2 Fluorotelomer sulfonic acids                                  |              |                            |                      |                      |                    |
| 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTS)                | ug/L         | < 0.01                     | 0.01                 | Pass                 |                    |
| 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTS)                | ug/L         | < 0.05                     | 0.05                 | Pass                 |                    |
| 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTS)                | ug/L         | < 0.03                     | 0.01                 | Pass                 |                    |
| 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTS)             | ug/L         | < 0.01                     | 0.01                 | Pass                 |                    |
| Method Blank                                                      | ug/L         |                            | 0.01                 | 1 433                |                    |
| Ammonia (as N)                                                    | mg/L         | < 0.01                     | 0.01                 | Pass                 |                    |
| Biochemical Oxygen Demand (BOD-5 Day)                             | mg/L         | < 5                        | 5                    | Pass                 |                    |
| Chemical Oxygen Demand (COD)                                      | mg/L         | < 25                       | 25                   | Pass                 |                    |
| Onomical Oxygen Demanu (OOD)                                      | mg/L         | < 25                       | 25                   | Pass                 |                    |
| Chlorida                                                          | IIIU/L       |                            |                      | F d 5 5              | -                  |
| Chloride Nitrate & Nitrite (as N)                                 |              | < 0.05                     | 0.05                 | Dace                 |                    |
| Nitrate & Nitrite (as N)                                          | mg/L         | < 0.05                     | 0.05                 | Pass                 |                    |
|                                                                   |              | < 0.05<br>< 0.02<br>< 0.02 | 0.05<br>0.02<br>0.02 | Pass<br>Pass<br>Pass |                    |



| Test                                              | Units | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|---------------------------------------------------|-------|----------|----------------------|----------------|--------------------|
| Sulphate (as SO4)                                 | mg/L  | < 5      | 5                    | Pass           |                    |
| Total Dissolved Solids                            | mg/L  | < 10     | 10                   | Pass           |                    |
| Total Kjeldahl Nitrogen (as N)                    | mg/L  | < 0.2    | 0.2                  | Pass           |                    |
| Total Organic Carbon                              | mg/L  | < 5      | 5                    | Pass           |                    |
| Method Blank                                      |       |          |                      |                |                    |
| Alkalinity (speciated)                            |       |          |                      |                |                    |
| Bicarbonate Alkalinity (as HCO3)                  | mg/L  | < 20     | 20                   | Pass           |                    |
| Carbonate Alkalinity (as CO3)                     | mg/L  | < 10     | 10                   | Pass           |                    |
| Hydroxide Alkalinity (as CaCO3)                   | mg/L  | < 10     | 10                   | Pass           |                    |
| Total Alkalinity (as CaCO3)                       | mg/L  | < 20     | 20                   | Pass           |                    |
| Method Blank                                      | , ,   |          |                      |                |                    |
| Alkali Metals                                     |       |          |                      |                |                    |
| Calcium                                           | mg/L  | < 0.5    | 0.5                  | Pass           |                    |
| Magnesium                                         | mg/L  | < 0.5    | 0.5                  | Pass           |                    |
| Potassium                                         | mg/L  | < 0.5    | 0.5                  | Pass           |                    |
| Sodium                                            | mg/L  | < 0.5    | 0.5                  | Pass           |                    |
| Method Blank                                      |       | , , 0.0  | 1 0.0                | 1 433          |                    |
| Heavy Metals                                      |       |          |                      |                |                    |
| Aluminium (filtered)                              | mg/L  | < 0.05   | 0.05                 | Pass           |                    |
| Arsenic (filtered)                                | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Cadmium (filtered)                                | mg/L  | < 0.0002 | 0.0001               | Pass           |                    |
| Chromium (filtered)                               | mg/L  | < 0.0002 | 0.0002               | Pass           |                    |
| Copper (filtered)                                 | mg/L  | < 0.001  | 0.001                | Pass           |                    |
|                                                   |       |          | 0.001                | Pass           |                    |
| Iron (filtered)                                   | mg/L  | < 0.05   | 0.001                | Pass           |                    |
| Lead (filtered)                                   | mg/L  | < 0.001  |                      |                |                    |
| Mercury (filtered)                                | mg/L  | < 0.0001 | 0.0001               | Pass           |                    |
| Nickel (filtered)                                 | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Zinc (filtered)                                   | mg/L  | < 0.005  | 0.005                | Pass           |                    |
| LCS - % Recovery                                  |       | T        |                      |                | -                  |
| Total Recoverable Hydrocarbons - 1999 NEPM Fracti |       | 10-      |                      | _              |                    |
| TRH C6-C9                                         | %     | 105      | 70-130               | Pass           |                    |
| LCS - % Recovery                                  |       | Т        | <u> </u>             | Г              | -                  |
| BTEX                                              |       |          |                      | _              |                    |
| Benzene                                           | %     | 110      | 70-130               | Pass           |                    |
| Toluene                                           | %     | 98       | 70-130               | Pass           | -                  |
| Ethylbenzene                                      | %     | 77       | 70-130               | Pass           |                    |
| m&p-Xylenes                                       | %     | 72       | 70-130               | Pass           |                    |
| Xylenes - Total                                   | %     | 78       | 70-130               | Pass           |                    |
| LCS - % Recovery                                  |       | T        | <u> </u>             | I              |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fracti |       |          |                      |                |                    |
| Naphthalene                                       | %     | 71       | 70-130               | Pass           |                    |
| TRH C6-C10                                        | %     | 104      | 70-130               | Pass           |                    |
| LCS - % Recovery                                  |       | T        |                      | ı              |                    |
| Polycyclic Aromatic Hydrocarbons                  | 1     |          |                      |                |                    |
| Acenaphthene                                      | %     | 99       | 70-130               | Pass           | <u> </u>           |
| Acenaphthylene                                    | %     | 105      | 70-130               | Pass           |                    |
| Anthracene                                        | %     | 109      | 70-130               | Pass           |                    |
| Benz(a)anthracene                                 | %     | 104      | 70-130               | Pass           |                    |
| Benzo(a)pyrene                                    | %     | 108      | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene                            | %     | 107      | 70-130               | Pass           |                    |
| Benzo(g.h.i)perylene                              | %     | 116      | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene                              | %     | 100      | 70-130               | Pass           |                    |
| Chrysene                                          | %     | 98       | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene                             | %     | 114      | 70-130               | Pass           |                    |



| Test                                                          | Units    | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|---------------------------------------------------------------|----------|----------|----------------------|----------------|--------------------|
| Fluoranthene                                                  | %        | 93       | 70-130               | Pass           |                    |
| Fluorene                                                      | %        | 106      | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene                                        | %        | 115      | 70-130               | Pass           |                    |
| Naphthalene                                                   | %        | 95       | 70-130               | Pass           |                    |
| Phenanthrene                                                  | %        | 109      | 70-130               | Pass           |                    |
| Pyrene                                                        | %        | 95       | 70-130               | Pass           |                    |
| LCS - % Recovery                                              |          |          |                      |                |                    |
| Phenols (Halogenated)                                         | <b>.</b> |          |                      |                |                    |
| 2-Chlorophenol                                                | %        | 96       | 30-130               | Pass           |                    |
| 2.4-Dichlorophenol                                            | %        | 93       | 30-130               | Pass           |                    |
| 2.4.5-Trichlorophenol                                         | %        | 106      | 30-130               | Pass           |                    |
| 2.4.6-Trichlorophenol                                         | %        | 100      | 30-130               | Pass           |                    |
| 2.6-Dichlorophenol                                            | %        | 91       | 30-130               | Pass           |                    |
| 4-Chloro-3-methylphenol                                       | %        | 103      | 30-130               | Pass           |                    |
| Pentachlorophenol                                             | %        | 121      | 30-130               | Pass           |                    |
| Tetrachlorophenols - Total                                    | %        | 98       | 30-130               | Pass           |                    |
| LCS - % Recovery                                              |          | 1        |                      |                |                    |
| Phenols (non-Halogenated)                                     |          |          |                      |                |                    |
| 2-Cyclohexyl-4.6-dinitrophenol                                | %        | 105      | 30-130               | Pass           |                    |
| 2-Methyl-4.6-dinitrophenol                                    | %        | 100      | 30-130               | Pass           |                    |
| 2-Methylphenol (o-Cresol)                                     | %        | 86       | 30-130               | Pass           |                    |
| 2-Nitrophenol                                                 | %        | 91       | 30-130               | Pass           |                    |
| 2.4-Dimethylphenol                                            | %        | 75       | 30-130               | Pass           |                    |
| 2.4-Dinitrophenol                                             | %        | 65       | 30-130               | Pass           |                    |
| 3&4-Methylphenol (m&p-Cresol)                                 | %        | 84       | 30-130               | Pass           |                    |
| 4-Nitrophenol                                                 | %        | 52       | 30-130               | Pass           |                    |
| Dinoseb                                                       | %        | 113      | 30-130               | Pass           |                    |
| Phenol                                                        | %        | 51       | 30-130               | Pass           |                    |
| LCS - % Recovery                                              |          | Т        |                      | Т              | -                  |
| Perfluoroalkyl carboxylic acids (PFCAs)                       |          |          |                      | _              |                    |
| Perfluorobutanoic acid (PFBA)                                 | %        | 86       | 50-150               | Pass           |                    |
| Perfluoropentanoic acid (PFPeA)                               | %        | 110      | 50-150               | Pass           |                    |
| Perfluorohexanoic acid (PFHxA)                                | %        | 121      | 50-150               | Pass           |                    |
| Perfluoroheptanoic acid (PFHpA)                               | %        | 100      | 50-150               | Pass           |                    |
| Perfluorooctanoic acid (PFOA)                                 | %        | 116      | 50-150               | Pass           |                    |
| Perfluorononanoic acid (PFNA)                                 | %        | 103      | 50-150               | Pass           |                    |
| Perfluorodecanoic acid (PFDA)                                 | %        | 99       | 50-150               | Pass           |                    |
| Perfluoroundecanoic acid (PFUnA)                              | %        | 91       | 50-150               | Pass           | -                  |
| Perfluorododecanoic acid (PFDoA)                              | %        | 94       | 50-150               | Pass           | -                  |
| Perfluorotridecanoic acid (PFTrDA)                            | %        | 112      | 50-150               | Pass           | -                  |
| Perfluorotetradecanoic acid (PFTeDA)                          | %        | 99       | 50-150               | Pass           |                    |
| LCS - % Recovery                                              |          |          |                      |                |                    |
| Perfluoroalkane sulfonamides (PFASAs)                         | 0/       | 07       | 50.450               | D              | -                  |
| Perfluoroctane sulfonamide (FOSA)                             | %        | 87       | 50-150               | Pass           | +                  |
| N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)             | %        | 101      | 50-150               | Pass           | <del> </del>       |
| N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)              | %        | 87       | 50-150               | Pass           | +                  |
| 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) | %        | 100      | 50-150               | Pass           |                    |
| 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)  | %        | 103      | 50-150               | Pass           |                    |
| N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)     | %        | 99       | 50-150               | Pass           |                    |
| N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)    | %        | 94       | 50-150               | Pass           |                    |
| LCS - % Recovery                                              |          |          |                      |                |                    |
| Perfluoroalkane sulfonic acids & Perfluoroalkane sulfonates   | (PFSAs)  |          |                      |                |                    |
| Perfluorobutanesulfonic acid (PFBS)                           | %        | 88       | 50-150               | Pass           |                    |
| Perfluoropentanesulfonic acid (PFPeS)                         | %        | 96       | 50-150               | Pass           |                    |



| Test                               |                       |        | Units     | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------------|-----------------------|--------|-----------|----------|----------------------|----------------|--------------------|
| Perfluorohexanesulfonic acid (PFH  | xS)                   |        | %         | 97       | 50-150               | Pass           |                    |
| Perfluoroheptanesulfonic acid (PFH | HpS)                  |        | %         | 80       | 50-150               | Pass           |                    |
| Perfluorooctanesulfonic acid (PFOS | S)                    |        | %         | 94       | 50-150               | Pass           |                    |
| Perfluorodecanesulfonic acid (PFD  | S)                    |        | %         | 79       | 50-150               | Pass           |                    |
| LCS - % Recovery                   |                       |        |           |          |                      |                |                    |
| n:2 Fluorotelomer sulfonic acids   |                       |        |           |          |                      |                |                    |
| 1H.1H.2H.2H-perfluorohexanesulfo   | nic acid (4:2 FTS)    |        | %         | 97       | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-perfluorooctanesulfor  | nic acid (6:2 FTS)    |        | %         | 117      | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-perfluorodecanesulfo   | onic acid (8:2 FTS)   |        | %         | 113      | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-perfluorododecanesu    | Ilfonic acid (10:2 FT | S)     | %         | 97       | 50-150               | Pass           |                    |
| LCS - % Recovery                   |                       |        |           |          |                      |                |                    |
| Ammonia (as N)                     |                       |        | %         | 113      | 70-130               | Pass           |                    |
| Chemical Oxygen Demand (COD)       |                       |        | %         | 96       | 70-130               | Pass           |                    |
| Chloride                           |                       |        | %         | 101      | 70-130               | Pass           |                    |
| Nitrate & Nitrite (as N)           |                       |        | %         | 104      | 70-130               | Pass           |                    |
| Nitrate (as N)                     |                       |        | %         | 104      | 70-130               | Pass           |                    |
| Nitrite (as N)                     |                       |        | %         | 106      | 70-130               | Pass           |                    |
| Phosphate total (as P)             |                       |        | %         | 91       | 70-130               | Pass           |                    |
| Sulphate (as SO4)                  |                       |        | %         | 116      | 70-130               | Pass           |                    |
| Total Dissolved Solids             |                       |        | %         | 91       | 70-130               | Pass           |                    |
| Total Kjeldahl Nitrogen (as N)     |                       |        | %         | 98       | 70-130               | Pass           |                    |
| Total Organic Carbon               |                       |        | %         | 90       | 70-130               | Pass           |                    |
| LCS - % Recovery                   |                       |        |           | ·        |                      |                |                    |
| Alkalinity (speciated)             |                       |        |           |          |                      |                |                    |
| Total Alkalinity (as CaCO3)        |                       |        | %         | 91       | 70-130               | Pass           |                    |
| LCS - % Recovery                   |                       |        |           | ·        |                      |                |                    |
| Alkali Metals                      |                       |        |           |          |                      |                |                    |
| Calcium                            |                       |        | %         | 108      | 70-130               | Pass           |                    |
| Magnesium                          |                       |        | %         | 109      | 70-130               | Pass           |                    |
| Potassium                          |                       |        | %         | 104      | 70-130               | Pass           |                    |
| Sodium                             |                       |        | %         | 105      | 70-130               | Pass           |                    |
| LCS - % Recovery                   |                       |        |           |          |                      |                |                    |
| Heavy Metals                       |                       |        |           |          |                      |                |                    |
| Aluminium (filtered)               |                       |        | %         | 107      | 80-120               | Pass           |                    |
| Arsenic (filtered)                 |                       |        | %         | 101      | 80-120               | Pass           |                    |
| Cadmium (filtered)                 |                       |        | %         | 102      | 80-120               | Pass           |                    |
| Chromium (filtered)                |                       |        | %         | 101      | 80-120               | Pass           |                    |
| Copper (filtered)                  |                       |        | %         | 102      | 80-120               | Pass           |                    |
| Iron (filtered)                    |                       |        | %         | 104      | 80-120               | Pass           |                    |
| Lead (filtered)                    |                       |        | %         | 102      | 80-120               | Pass           |                    |
| Mercury (filtered)                 |                       |        | %         | 80       | 70-130               | Pass           |                    |
| Nickel (filtered)                  |                       |        | %         | 101      | 80-120               | Pass           |                    |
| Zinc (filtered)                    |                       |        | %         | 103      | 80-120               | Pass           |                    |
| Test                               | Lab Sample ID         | QA     | Units     | Result 1 | Acceptance           | Pass           | Qualifying         |
| Spike - % Recovery                 | Lab Gample 15         | Source | O I I I I | result i | Limits               | Limits         | Code               |
| Total Recoverable Hydrocarbons     | - 1999 NEPM Fract     | ions   |           | Result 1 |                      |                |                    |
| TRH C6-C9                          | M17-JI09756           | NCP    | %         | 89       | 70-130               | Pass           |                    |
| Spike - % Recovery                 | 3.007.00              |        | ,,,       |          | . 5 100              | . 400          |                    |
| BTEX                               |                       |        |           | Result 1 |                      |                |                    |
| Benzene                            | M17-JI09756           | NCP    | %         | 119      | 70-130               | Pass           |                    |
| Toluene                            | M17-JI09756           | NCP    | %         | 109      | 70-130               | Pass           |                    |
|                                    | M17-JI09756           | NCP    | %         | 91       | 70-130               | Pass           |                    |
| FINVIDENZENE                       |                       |        |           |          |                      |                | 1                  |
| Ethylbenzene<br>m&p-Xylenes        | M17-JI09756           | NCP    | %         | 73       | 70-130               | Pass           |                    |



| Test                                                              | Lab Sample ID      | QA<br>Source | Units   | Result 1 |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-------------------------------------------------------------------|--------------------|--------------|---------|----------|-----|----------------------|----------------|--------------------|
| Xylenes - Total                                                   | M17-JI09756        | NCP          | %       | 77       |     | 70-130               | Pass           |                    |
| Spike - % Recovery                                                |                    |              |         |          |     |                      |                |                    |
| Total Recoverable Hydrocarbons -                                  | 2013 NEPM Fract    | ions         |         | Result 1 |     |                      |                |                    |
| Naphthalene                                                       | M17-JI09756        | NCP          | %       | 81       |     | 70-130               | Pass           |                    |
| TRH C6-C10                                                        | M17-JI09756        | NCP          | %       | 88       |     | 70-130               | Pass           |                    |
| Spike - % Recovery                                                |                    |              |         | T        |     |                      |                |                    |
| Perfluoroalkyl carboxylic acids (Pl                               | FCAs)              |              |         | Result 1 |     |                      |                |                    |
| Perfluorobutanoic acid (PFBA)                                     | M17-JI06880        | NCP          | %       | 88       |     | 50-150               | Pass           |                    |
| Perfluoropentanoic acid (PFPeA)                                   | M17-JI06880        | NCP          | %       | 112      |     | 50-150               | Pass           |                    |
| Perfluorohexanoic acid (PFHxA)                                    | M17-JI06880        | NCP          | %       | 124      |     | 50-150               | Pass           |                    |
| Perfluoroheptanoic acid (PFHpA)                                   | M17-JI06880        | NCP          | %       | 102      |     | 50-150               | Pass           |                    |
| Perfluorooctanoic acid (PFOA)                                     | M17-JI06880        | NCP          | %       | 112      |     | 50-150               | Pass           |                    |
| Perfluorononanoic acid (PFNA)                                     | M17-JI06880        | NCP          | %       | 100      |     | 50-150               | Pass           |                    |
| Perfluorodecanoic acid (PFDA)                                     | M17-JI06880        | NCP          | %       | 93       |     | 50-150               | Pass           |                    |
| Perfluoroundecanoic acid (PFUnA)                                  | M17-JI06880        | NCP          | %       | 87       |     | 50-150               | Pass           |                    |
| Perfluorododecanoic acid (PFDoA)                                  | M17-JI06880        | NCP          | %       | 97       |     | 50-150               | Pass           |                    |
| Perfluorotridecanoic acid (PFTrDA)                                | M17-JI06880        | NCP          | %       | 110      |     | 50-150               | Pass           |                    |
| Perfluorotetradecanoic acid (PFTeDA)                              | M17-JI06880        | NCP          | %       | 97       |     | 50-150               | Pass           |                    |
| Spike - % Recovery                                                |                    |              |         |          | T T |                      |                |                    |
| Perfluoroalkane sulfonamides (PF                                  | ASAs)              |              |         | Result 1 |     |                      |                |                    |
| Perfluorooctane sulfonamide (FOSA)                                | M17-JI06880        | NCP          | %       | 84       |     | 50-150               | Pass           |                    |
| N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)                 | M17-JI06880        | NCP          | %       | 97       |     | 50-150               | Pass           |                    |
| N-ethylperfluoro-1-octane<br>sulfonamide (N-EtFOSA)               | M17-JI06880        | NCP          | %       | 89       |     | 50-150               | Pass           |                    |
| 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)     | M17-JI06880        | NCP          | %       | 116      |     | 50-150               | Pass           |                    |
| 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)      | M17-JI06880        | NCP          | %       | 108      |     | 50-150               | Pass           |                    |
| N-ethyl-<br>perfluorooctanesulfonamidoacetic<br>acid (N-EtFOSAA)  | M17-JI06880        | NCP          | %       | 95       |     | 50-150               | Pass           |                    |
| N-methyl-<br>perfluorooctanesulfonamidoacetic<br>acid (N-MeFOSAA) | M17-JI06880        | NCP          | %       | 98       |     | 50-150               | Pass           |                    |
| Spike - % Recovery                                                |                    |              |         |          |     |                      |                |                    |
| Perfluoroalkane sulfonic acids & F                                | Perfluoroalkane su | Ifonates (   | (PFSAs) | Result 1 |     |                      |                |                    |
| Perfluorobutanesulfonic acid (PFBS)                               | M17-JI06880        | NCP          | %       | 91       |     | 50-150               | Pass           |                    |
| Perfluoropentanesulfonic acid (PFPeS)                             | M17-JI06880        | NCP          | %       | 98       |     | 50-150               | Pass           |                    |
| Perfluorohexanesulfonic acid (PFHxS)                              | M17-JI06880        | NCP          | %       | 102      |     | 50-150               | Pass           |                    |
| Perfluoroheptanesulfonic acid (PFHpS)                             | M17-JI06880        | NCP          | %       | 86       |     | 50-150               | Pass           |                    |
| Perfluorooctanesulfonic acid (PFOS)                               | M17-JI06880        | NCP          | %       | 84       |     | 50-150               | Pass           |                    |
| Perfluorodecanesulfonic acid (PFDS)                               | M17-JI06880        | NCP          | %       | 80       |     | 50-150               | Pass           |                    |
| Spike - % Recovery                                                |                    |              |         |          |     |                      |                |                    |
| n:2 Fluorotelomer sulfonic acids                                  | Г                  | , ,          |         | Result 1 |     |                      |                |                    |
| 1H.1H.2H.2H-<br>perfluorohexanesulfonic acid (4:2<br>FTS)         | M17-JI06880        | NCP          | %       | 103      |     | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-<br>perfluorooctanesulfonic acid (6:2<br>FTS)         | M17-JI06880        | NCP          | %       | 111      |     | 50-150               | Pass           |                    |



| Test                                                         | Lab Sample ID | QA<br>Source | Units | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|--------------------------------------------------------------|---------------|--------------|-------|----------|----------------------|----------------|--------------------|
| 1H.1H.2H.2H-<br>perfluorodecanesulfonic acid (8:2<br>FTS)    | M17-JI06880   | NCP          | %     | 108      | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-<br>perfluorododecanesulfonic acid<br>(10:2 FTS) | M17-JI06880   | NCP          | %     | 87       | 50-150               | Pass           |                    |
| Spike - % Recovery                                           | W17 9100000   | 1101         | 70    | 01       | 1 30-130             | 1 433          |                    |
| opine // Necovery                                            |               |              |       | Result 1 |                      |                |                    |
| Ammonia (as N)                                               | M17-JI11516   | NCP          | %     | 102      | 70-130               | Pass           |                    |
| Chemical Oxygen Demand (COD)                                 | M17-Jn00120   | NCP          | %     | 88       | 70-130               | Pass           |                    |
| Nitrate & Nitrite (as N)                                     | M17-JI11655   | NCP          | %     | 102      | 70-130               | Pass           |                    |
| Nitrate (as N)                                               | M17-JI11655   | NCP          | %     | 102      | 70-130               | Pass           |                    |
| Nitrite (as N)                                               | M17-JI11516   | NCP          | %     | 106      | 70-130               | Pass           |                    |
| Phosphate total (as P)                                       | B17-JI11051   | NCP          | %     | 87       | 70-130               | Pass           |                    |
| Total Kjeldahl Nitrogen (as N)                               | M17-JI14067   | NCP          | %     | 109      | 70-130               | Pass           |                    |
| Spike - % Recovery                                           |               |              |       |          |                      |                |                    |
| Alkalinity (speciated)                                       |               |              |       | Result 1 |                      |                |                    |
| Total Alkalinity (as CaCO3)                                  | M17-JI12123   | NCP          | %     | 120      | 70-130               | Pass           |                    |
| Spike - % Recovery                                           |               |              |       |          |                      |                |                    |
| Alkali Metals                                                |               |              |       | Result 1 |                      |                |                    |
| Calcium                                                      | M17-JI11653   | NCP          | %     | 92       | 70-130               | Pass           |                    |
| Magnesium                                                    | M17-JI11653   | NCP          | %     | 97       | 70-130               | Pass           |                    |
| Potassium                                                    | M17-JI10861   | NCP          | %     | 108      | 70-130               | Pass           |                    |
| Sodium                                                       | M17-JI11653   | NCP          | %     | 94       | 70-130               | Pass           |                    |
| Spike - % Recovery                                           |               |              |       |          |                      |                |                    |
| Heavy Metals                                                 |               |              |       | Result 1 |                      |                |                    |
| Aluminium (filtered)                                         | B17-JI13224   | NCP          | %     | 104      | 75-125               | Pass           |                    |
| Arsenic (filtered)                                           | B17-JI13224   | NCP          | %     | 100      | 70-130               | Pass           |                    |
| Cadmium (filtered)                                           | B17-JI13224   | NCP          | %     | 96       | 70-130               | Pass           |                    |
| Chromium (filtered)                                          | B17-JI13224   | NCP          | %     | 97       | 70-130               | Pass           |                    |
| Copper (filtered)                                            | B17-JI13224   | NCP          | %     | 94       | 70-130               | Pass           |                    |
| Iron (filtered)                                              | B17-JI13224   | NCP          | %     | 97       | 70-130               | Pass           |                    |
| Lead (filtered)                                              | B17-JI13224   | NCP          | %     | 95       | 70-130               | Pass           |                    |
| Mercury (filtered)                                           | B17-JI13224   | NCP          | %     | 94       | 70-130               | Pass           |                    |
| Nickel (filtered)                                            | B17-JI13224   | NCP          | %     | 91       | 70-130               | Pass           |                    |
| Zinc (filtered)                                              | B17-JI11539   | NCP          | %     | 102      | 70-130               | Pass           |                    |
| Spike - % Recovery                                           |               |              |       |          |                      |                |                    |
| Polycyclic Aromatic Hydrocarbons                             | i             |              |       | Result 1 |                      |                |                    |
| Acenaphthene                                                 | M17-JI11962   | CP           | %     | 97       | 70-130               | Pass           |                    |
| Acenaphthylene                                               | M17-JI11962   | CP           | %     | 106      | 70-130               | Pass           |                    |
| Anthracene                                                   | M17-JI11962   | CP           | %     | 119      | 70-130               | Pass           |                    |
| Benz(a)anthracene                                            | M17-JI11962   | CP           | %     | 126      | 70-130               | Pass           |                    |
| Benzo(a)pyrene                                               | M17-JI11962   | CP           | %     | 126      | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene                                       | M17-JI11962   | CP           | %     | 128      | 70-130               | Pass           |                    |
| Benzo(g.h.i)perylene                                         | M17-JI11962   | CP           | %     | 117      | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene                                         | M17-JI11962   | CP           | %     | 125      | 70-130               | Pass           |                    |
| Chrysene                                                     | M17-JI11962   | CP           | %     | 118      | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene                                        | M17-JI11962   | CP           | %     | 117      | 70-130               | Pass           |                    |
| Fluoranthene                                                 | M17-JI11962   | CP           | %     | 107      | 70-130               | Pass           |                    |
| Fluorene                                                     | M17-JI11962   | CP           | %     | 107      | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene                                       | M17-JI11962   | CP           | %     | 123      | 70-130               | Pass           |                    |
| Naphthalene                                                  | M17-JI11962   | CP           | %     | 85       | 70-130               | Pass           |                    |
| Phenanthrene                                                 | M17-JI11962   | CP           | %     | 117      | 70-130               | Pass           |                    |
|                                                              |               |              |       | 1 1      | 1 70.400             |                | 1                  |
| Pyrene Spike - % Recovery                                    | M17-JI11962   | CP           | %     | 109      | 70-130               | Pass           |                    |



| Test                                                              | Lab Sample ID | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-------------------------------------------------------------------|---------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------|
| 2-Chlorophenol                                                    | M17-JI11962   | CP           | %     | 56       |          |     | 30-130               | Pass           |                    |
| 2.4-Dichlorophenol                                                | M17-JI11962   | CP           | %     | 89       |          |     | 30-130               | Pass           |                    |
| 2.4.5-Trichlorophenol                                             | M17-JI11962   | CP           | %     | 108      |          |     | 30-130               | Pass           |                    |
| 2.4.6-Trichlorophenol                                             | M17-JI11962   | CP           | %     | 101      |          |     | 30-130               | Pass           |                    |
| 2.6-Dichlorophenol                                                | M17-JI11962   | CP           | %     | 87       |          |     | 30-130               | Pass           |                    |
| 4-Chloro-3-methylphenol                                           | M17-JI11962   | CP           | %     | 111      |          |     | 30-130               | Pass           |                    |
| Pentachlorophenol                                                 | M17-JI11962   | CP           | %     | 125      |          |     | 30-130               | Pass           |                    |
| Tetrachlorophenols - Total                                        | M17-JI11962   | CP           | %     | 112      |          |     | 30-130               | Pass           |                    |
| Spike - % Recovery                                                |               |              |       | 1        | 1        |     |                      |                |                    |
| Phenols (non-Halogenated)                                         | Γ             | 1            |       | Result 1 |          |     |                      |                |                    |
| 2-Cyclohexyl-4.6-dinitrophenol                                    | M17-JI11962   | CP           | %     | 121      |          |     | 30-130               | Pass           |                    |
| 2-Methyl-4.6-dinitrophenol                                        | M17-JI11962   | CP           | %     | 109      |          |     | 30-130               | Pass           |                    |
| 2-Methylphenol (o-Cresol)                                         | M17-JI11962   | CP           | %     | 79       |          |     | 30-130               | Pass           |                    |
| 2-Nitrophenol                                                     | M17-JI11962   | CP           | %     | 82       |          |     | 30-130               | Pass           |                    |
| 2.4-Dimethylphenol                                                | M17-JI11962   | CP           | %     | 86       |          |     | 30-130               | Pass           |                    |
| 2.4-Dinitrophenol                                                 | M17-JI11962   | CP           | %     | 42       |          |     | 30-130               | Pass           |                    |
| 3&4-Methylphenol (m&p-Cresol)                                     | M17-JI11962   | CP           | %     | 87       |          |     | 30-130               | Pass           |                    |
| 4-Nitrophenol                                                     | M17-JI11962   | CP           | %     | 68       |          |     | 30-130               | Pass           |                    |
| Dinoseb                                                           | M17-JI11962   | CP           | %     | 125      |          |     | 30-130               | Pass           |                    |
| Phenol                                                            | M17-JI11962   | CP           | %     | 47       |          |     | 30-130               | Pass           |                    |
| Spike - % Recovery                                                |               |              |       |          | , , ,    |     |                      |                |                    |
|                                                                   |               |              |       | Result 1 |          |     |                      |                |                    |
| Phosphorus reactive (as P)                                        | M17-JI11964   | CP           | %     | 82       |          |     | 70-130               | Pass           |                    |
| Test                                                              | Lab Sample ID | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying Code    |
| Duplicate                                                         |               |              |       |          |          |     |                      |                |                    |
| Perfluoroalkyl carboxylic acids (Pf                               | CAs)          |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Perfluorobutanoic acid (PFBA)                                     | B17-JI11642   | NCP          | ug/L  | 0.09     | 0.09     | 1.0 | 30%                  | Pass           |                    |
| Perfluoropentanoic acid (PFPeA)                                   | B17-JI11642   | NCP          | ug/L  | 0.12     | 0.12     | 2.0 | 30%                  | Pass           |                    |
| Perfluorohexanoic acid (PFHxA)                                    | B17-JI11642   | NCP          | ug/L  | 0.16     | 0.16     | <1  | 30%                  | Pass           |                    |
| Perfluoroheptanoic acid (PFHpA)                                   | B17-JI11642   | NCP          | ug/L  | 0.09     | 0.09     | 2.0 | 30%                  | Pass           |                    |
| Perfluorooctanoic acid (PFOA)                                     | B17-JI11642   | NCP          | ug/L  | 0.24     | 0.23     | 5.0 | 30%                  | Pass           |                    |
| Perfluorononanoic acid (PFNA)                                     | B17-JI11642   | NCP          | ug/L  | 0.03     | 0.03     | 3.0 | 30%                  | Pass           |                    |
| Perfluorodecanoic acid (PFDA)                                     | B17-JI11642   | NCP          | ug/L  | 0.01     | 0.01     | 12  | 30%                  | Pass           |                    |
| Perfluoroundecanoic acid (PFUnA)                                  | B17-JI11642   | NCP          | ug/L  | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| Perfluorododecanoic acid (PFDoA)                                  | B17-JI11642   | NCP          | ug/L  | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| Perfluorotridecanoic acid (PFTrDA)                                | B17-JI11642   | NCP          | ug/L  | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| Perfluorotetradecanoic acid (PFTeDA)                              | B17-JI11642   | NCP          | ug/L  | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| Duplicate                                                         |               |              |       |          |          |     |                      |                |                    |
| Perfluoroalkane sulfonamides (PF                                  | ASAs)         |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Perfluorooctane sulfonamide (FOSA)                                | B17-Jl11642   | NCP          | ug/L  | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)                 | B17-Jl11642   | NCP          | ug/L  | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)                  | B17-JI11642   | NCP          | ug/L  | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)     | B17-JI11642   | NCP          | ug/L  | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)      | B17-JI11642   | NCP          | ug/L  | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| N-ethyl-<br>perfluorooctanesulfonamidoacetic<br>acid (N-EtFOSAA)  | B17-Jl11642   | NCP          | ug/L  | 0.05     | 0.05     | 1.0 | 30%                  | Pass           |                    |
| N-methyl-<br>perfluorooctanesulfonamidoacetic<br>acid (N-MeFOSAA) | B17-Jl11642   | NCP          | ug/L  | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |



| Duplicate                                                    |                            |           | (DEO 4 )     | D 1/4         |               | DDD      |            |              |  |
|--------------------------------------------------------------|----------------------------|-----------|--------------|---------------|---------------|----------|------------|--------------|--|
| Perfluoroalkane sulfonic acids & P                           | erfluoroalkane su          | ironates  | (PFSAS)      | Result 1      | Result 2      | RPD      |            |              |  |
| Perfluorobutanesulfonic acid (PFBS)                          | B17-JI11642                | NCP       | ug/L         | 0.02          | 0.02          | 2.0      | 30%        | Pass         |  |
| Perfluoropentanesulfonic acid (PFPeS)                        | B17-JI11642                | NCP       | ug/L         | < 0.01        | < 0.01        | <1       | 30%        | Pass         |  |
| Perfluorohexanesulfonic acid (PFHxS)                         | B17-JI11642                | NCP       | ug/L         | 0.02          | 0.02          | 2.0      | 30%        | Pass         |  |
| Perfluoroheptanesulfonic acid (PFHpS)                        | B17-JI11642                | NCP       | ug/L         | < 0.01        | < 0.01        | <1       | 30%        | Pass         |  |
| Perfluorooctanesulfonic acid (PFOS)                          | B17-Jl11642                | NCP       | ug/L         | 0.26          | 0.27          | 1.0      | 30%        | Pass         |  |
| Perfluorodecanesulfonic acid (PFDS)                          | B17-Jl11642                | NCP       | ug/L         | < 0.01        | < 0.01        | <1       | 30%        | Pass         |  |
| Duplicate                                                    |                            |           |              |               |               |          |            |              |  |
| n:2 Fluorotelomer sulfonic acids                             |                            |           |              | Result 1      | Result 2      | RPD      |            |              |  |
| 1H.1H.2H.2H-<br>perfluorohexanesulfonic acid (4:2<br>FTS)    | B17-Jl11642                | NCP       | ug/L         | < 0.01        | < 0.01        | <1       | 30%        | Pass         |  |
| 1H.1H.2H.2H-<br>perfluorooctanesulfonic acid (6:2<br>FTS)    | B17-Jl11642                | NCP       | ug/L         | < 0.05        | < 0.05        | <1       | 30%        | Pass         |  |
| 1H.1H.2H.2H-<br>perfluorodecanesulfonic acid (8:2<br>FTS)    | B17-Jl11642                | NCP       | ug/L         | < 0.01        | < 0.01        | <1       | 30%        | Pass         |  |
| 1H.1H.2H.2H-<br>perfluorododecanesulfonic acid<br>(10:2 FTS) | B17-Jl11642                | NCP       | ug/L         | < 0.01        | < 0.01        | <1       | 30%        | Pass         |  |
| Duplicate                                                    |                            |           |              |               | 1             |          |            |              |  |
|                                                              |                            | ı         |              | Result 1      | Result 2      | RPD      |            |              |  |
| Ammonia (as N)                                               | M17-JI11516                | NCP       | mg/L         | < 0.01        | < 0.01        | <1       | 30%        | Pass         |  |
| Biochemical Oxygen Demand (BOD-5 Day)                        | M17-JI10183                | NCP       | mg/L         | < 5           | < 5           | <1       | 30%        | Pass         |  |
| Chemical Oxygen Demand (COD)                                 | M17-JI11959                | CP        | mg/L         | 480           | 370           | 25       | 30%        | Pass         |  |
| Chloride                                                     | M17-JI11959                | CP        | mg/L         | 140           | 150           | 2.0      | 30%        | Pass         |  |
| Conductivity (at 25°C)                                       | M17-JI11959                | CP        | uS/cm        | 1100          | 1200          | 3.0      | 30%        | Pass         |  |
| Nitrate & Nitrite (as N)                                     | M17-JI11655                | NCP       | mg/L         | < 0.05        | < 0.05        | <1       | 30%        | Pass         |  |
| Nitrate (as N)                                               | M17-JI11655                | NCP       | mg/L         | 0.05          | 0.05          | 5.0      | 30%        | Pass         |  |
| Nitrite (as N)                                               | M17-JI11516                | NCP       | mg/L         | 0.04          | 0.04          | 3.0      | 30%        | Pass         |  |
| pH                                                           | M17-JI11959                | CP        | pH Units     | 6.2           | 6.1           | pass     | 30%        | Pass         |  |
| Phosphate total (as P) Sulphate (as SO4)                     | B17-JI11777<br>M17-JI11959 | NCP<br>CP | mg/L<br>mg/L | < 0.05<br>190 | < 0.05<br>190 | <1<br><1 | 30%<br>30% | Pass         |  |
| Total Dissolved Solids                                       | M17-JI11959                | CP        | mg/L         | 1100          | 1100          | 2.0      | 30%        | Pass<br>Pass |  |
| Total Kjeldahl Nitrogen (as N)                               | M17-JI14064                | NCP       | mg/L         | 330           | 340           | 2.3      | 30%        | Pass         |  |
| Total Organic Carbon                                         | M17-JI11959                | CP        | mg/L         | 200           | 210           | 4.0      | 30%        | Pass         |  |
| Duplicate                                                    | 0111000                    | <u> </u>  | y, L         |               |               | 7.0      | 0070       |              |  |
| Alkalinity (speciated)                                       |                            |           |              | Result 1      | Result 2      | RPD      |            |              |  |
| Bicarbonate Alkalinity (as HCO3)                             | M17-JI11959                | СР        | mg/L         | 110           | 110           | 2.0      | 30%        | Pass         |  |
| Carbonate Alkalinity (as CO3)                                | M17-JI11959                | CP        | mg/L         | < 10          | < 10          | <1       | 30%        | Pass         |  |
| Hydroxide Alkalinity (as CaCO3)                              | M17-JI11959                | СР        | mg/L         | < 10          | < 10          | <1       | 30%        | Pass         |  |
| Total Alkalinity (as CaCO3)                                  | M17-JI11959                | СР        | mg/L         | 92            | 94            | 2.0      | 30%        | Pass         |  |
| Duplicate                                                    |                            |           |              |               |               |          |            |              |  |
| Alkali Metals                                                |                            |           |              | Result 1      | Result 2      | RPD      |            |              |  |
| Calcium                                                      | M17-JI11653                | NCP       | mg/L         | 100           | 89            | 11       | 30%        | Pass         |  |
| Magnesium                                                    | M17-JI11653                | NCP       | mg/L         | 220           | 190           | 10       | 30%        | Pass         |  |
| Potassium                                                    | M17-JI11653                | NCP       | mg/L         | < 5           | < 5           | <1       | 30%        | Pass         |  |
| Sodium                                                       | M17-JI11653                | NCP       | mg/L         | 1100          | 950           | 10       | 30%        | Pass         |  |

Report Number: 553774-W



| Duplicate                        |             |     |      |          |          |     |      |      |  |
|----------------------------------|-------------|-----|------|----------|----------|-----|------|------|--|
|                                  |             |     |      | Bosult 4 | Popult 0 | RPD |      |      |  |
| Heavy Metals                     | D47 U40004  | NOD |      | Result 1 | Result 2 |     | 000/ |      |  |
| Aluminium (filtered)             | B17-JI13224 | NCP | mg/L | < 0.05   | < 0.05   | <1  | 30%  | Pass |  |
| Arsenic (filtered)               | B17-JI13224 | NCP | mg/L | < 0.001  | < 0.001  | <1  | 30%  | Pass |  |
| Cadmium (filtered)               | B17-JI13224 | NCP | mg/L | < 0.0002 | < 0.0002 | <1  | 30%  | Pass |  |
| Chromium (filtered)              | B17-JI13224 | NCP | mg/L | 0.001    | < 0.001  | 24  | 30%  | Pass |  |
| Copper (filtered)                | B17-JI13224 | NCP | mg/L | 0.003    | 0.003    | 5.0 | 30%  | Pass |  |
| Iron (filtered)                  | B17-JI13224 | NCP | mg/L | < 0.05   | < 0.05   | <1  | 30%  | Pass |  |
| Lead (filtered)                  | B17-JI13224 | NCP | mg/L | < 0.001  | < 0.001  | <1  | 30%  | Pass |  |
| Mercury (filtered)               | B17-JI13224 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30%  | Pass |  |
| Nickel (filtered)                | B17-JI13224 | NCP | mg/L | 0.015    | 0.016    | 5.0 | 30%  | Pass |  |
| Zinc (filtered)                  | B17-JI11539 | NCP | mg/L | < 0.005  | < 0.005  | <1  | 30%  | Pass |  |
| Duplicate                        |             |     |      | I        |          |     |      |      |  |
| Hardness Set                     | T           |     |      | Result 1 | Result 2 | RPD |      | +_   |  |
| Hardness mg equivalent CaCO3/L   | M17-JI11653 | NCP | mg/L | 1100     | 1000     | 10  | 30%  | Pass |  |
| Duplicate                        |             |     |      |          |          |     |      |      |  |
| Total Recoverable Hydrocarbons - |             |     |      | Result 1 | Result 2 | RPD |      | +    |  |
| TRH C10-C14                      | M17-JI11961 | CP  | mg/L | < 0.05   | < 0.05   | <1  | 30%  | Pass |  |
| TRH C15-C28                      | M17-JI11961 | CP  | mg/L | < 0.1    | < 0.1    | <1  | 30%  | Pass |  |
| TRH C29-C36                      | M17-JI11961 | CP  | mg/L | < 0.1    | < 0.1    | <1  | 30%  | Pass |  |
| Duplicate                        |             |     |      |          |          |     |      |      |  |
| Total Recoverable Hydrocarbons - |             |     | 1    | Result 1 | Result 2 | RPD |      |      |  |
| TRH >C10-C16                     | M17-JI11961 | CP  | mg/L | < 0.05   | < 0.05   | <1  | 30%  | Pass |  |
| TRH >C16-C34                     | M17-JI11961 | CP  | mg/L | < 0.1    | < 0.1    | <1  | 30%  | Pass |  |
| TRH >C34-C40                     | M17-JI11961 | CP  | mg/L | < 0.1    | < 0.1    | <1  | 30%  | Pass |  |
| Duplicate                        |             |     |      | T        |          |     | I    |      |  |
| Polycyclic Aromatic Hydrocarbons | 5           | T   | T    | Result 1 | Result 2 | RPD |      |      |  |
| Acenaphthene                     | M17-JI11961 | CP  | mg/L | < 0.001  | < 0.001  | <1  | 30%  | Pass |  |
| Acenaphthylene                   | M17-JI11961 | CP  | mg/L | < 0.001  | < 0.001  | <1  | 30%  | Pass |  |
| Anthracene                       | M17-JI11961 | CP  | mg/L | < 0.001  | < 0.001  | <1  | 30%  | Pass |  |
| Benz(a)anthracene                | M17-JI11961 | CP  | mg/L | < 0.001  | < 0.001  | <1  | 30%  | Pass |  |
| Benzo(a)pyrene                   | M17-JI11961 | CP  | mg/L | < 0.001  | < 0.001  | <1  | 30%  | Pass |  |
| Benzo(b&j)fluoranthene           | M17-JI11961 | CP  | mg/L | < 0.001  | < 0.001  | <1  | 30%  | Pass |  |
| Benzo(g.h.i)perylene             | M17-JI11961 | CP  | mg/L | < 0.001  | < 0.001  | <1  | 30%  | Pass |  |
| Benzo(k)fluoranthene             | M17-JI11961 | CP  | mg/L | < 0.001  | < 0.001  | <1  | 30%  | Pass |  |
| Chrysene                         | M17-JI11961 | CP  | mg/L | < 0.001  | < 0.001  | <1  | 30%  | Pass |  |
| Dibenz(a.h)anthracene            | M17-JI11961 | CP  | mg/L | < 0.001  | < 0.001  | <1  | 30%  | Pass |  |
| Fluoranthene                     | M17-JI11961 | CP  | mg/L | < 0.001  | < 0.001  | <1  | 30%  | Pass |  |
| Fluorene                         | M17-JI11961 | CP  | mg/L | < 0.001  | < 0.001  | <1  | 30%  | Pass |  |
| Indeno(1.2.3-cd)pyrene           | M17-JI11961 | CP  | mg/L | < 0.001  | < 0.001  | <1  | 30%  | Pass |  |
| Naphthalene                      | M17-JI11961 | CP  | mg/L | < 0.001  | < 0.001  | <1  | 30%  | Pass |  |
| Phenanthrene                     | M17-JI11961 | CP  | mg/L | < 0.001  | < 0.001  | <1  | 30%  | Pass |  |
| Pyrene                           | M17-JI11961 | CP  | mg/L | < 0.001  | < 0.001  | <1  | 30%  | Pass |  |
| Duplicate                        |             |     |      |          |          |     |      |      |  |
| Phenols (Halogenated)            |             |     |      | Result 1 | Result 2 | RPD |      |      |  |
| 2-Chlorophenol                   | M17-JI11961 | CP  | mg/L | < 0.003  | < 0.003  | <1  | 30%  | Pass |  |
| 2.4-Dichlorophenol               | M17-JI11961 | CP  | mg/L | < 0.003  | < 0.003  | <1  | 30%  | Pass |  |
| 2.4.5-Trichlorophenol            | M17-JI11961 | CP  | mg/L | < 0.01   | < 0.01   | <1  | 30%  | Pass |  |
| 2.4.6-Trichlorophenol            | M17-JI11961 | CP  | mg/L | < 0.01   | < 0.01   | <1  | 30%  | Pass |  |
| 2.6-Dichlorophenol               | M17-JI11961 | CP  | mg/L | < 0.003  | < 0.003  | <1  | 30%  | Pass |  |
| 4-Chloro-3-methylphenol          | M17-JI11961 | CP  | mg/L | < 0.01   | < 0.01   | <1  | 30%  | Pass |  |
| Pentachlorophenol                | M17-JI11961 | CP  | mg/L | < 0.01   | < 0.01   | <1  | 30%  | Pass |  |
| Tetrachlorophenols - Total       | M17-JI11961 | СР  | mg/L | < 0.03   | < 0.03   | <1  | 30%  | Pass |  |



| <b>D</b>                            |                   |      |          |           |           |     |       |       |  |
|-------------------------------------|-------------------|------|----------|-----------|-----------|-----|-------|-------|--|
| Duplicate Phenols (non-Halogenated) |                   |      |          | Result 1  | Result 2  | RPD |       |       |  |
|                                     | M47 U44004        | СР   |          |           |           |     | 200/  | Dana  |  |
| 2-Cyclohexyl-4.6-dinitrophenol      | M17-JI11961       |      | mg/L     | < 0.1     | < 0.1     | <1  | 30%   | Pass  |  |
| 2-Methyl-4.6-dinitrophenol          | M17-JI11961       | CP   | mg/L     | < 0.03    | < 0.03    | <1  | 30%   | Pass  |  |
| 2-Methylphenol (o-Cresol)           | M17-JI11961       | CP   | mg/L     | < 0.003   | < 0.003   | <1  | 30%   | Pass  |  |
| 2-Nitrophenol                       | M17-JI11961       | CP   | mg/L     | < 0.01    | < 0.01    | <1  | 30%   | Pass  |  |
| 2.4-Dimethylphenol                  | M17-JI11961       | CP   | mg/L     | < 0.003   | < 0.003   | <1  | 30%   | Pass  |  |
| 2.4-Dinitrophenol                   | M17-JI11961       | CP   | mg/L     | < 0.03    | < 0.03    | <1  | 30%   | Pass  |  |
| 3&4-Methylphenol (m&p-Cresol)       | M17-JI11961       | CP   | mg/L     | < 0.006   | < 0.006   | <1  | 30%   | Pass  |  |
| 4-Nitrophenol                       | M17-JI11961       | CP   | mg/L     | < 0.03    | < 0.03    | <1  | 30%   | Pass  |  |
| Dinoseb                             | M17-JI11961       | CP   | mg/L     | < 0.1     | < 0.1     | <1  | 30%   | Pass  |  |
| Phenol                              | M17-JI11961       | CP   | mg/L     | < 0.003   | < 0.003   | <1  | 30%   | Pass  |  |
| Duplicate                           |                   |      |          |           |           |     |       |       |  |
|                                     |                   |      |          | Result 1  | Result 2  | RPD |       |       |  |
| Phosphorus reactive (as P)          | M17-JI11963       | СР   | mg/L     | 1.3       | 1.3       | <1  | 30%   | Pass  |  |
| Duplicate                           |                   |      |          |           |           |     |       |       |  |
| Total Recoverable Hydrocarbons      | - 1999 NEPM Fract | ions |          | Result 1  | Result 2  | RPD |       |       |  |
| TRH C6-C9                           | M17-JI11965       | СР   | mg/L     | < 0.02    | < 0.02    | <1  | 30%   | Pass  |  |
| Duplicate                           |                   | •    |          | •         |           |     |       |       |  |
| BTEX                                |                   |      |          | Result 1  | Result 2  | RPD |       |       |  |
| Benzene                             | M17-JI11965       | СР   | mg/L     | < 0.001   | < 0.001   | <1  | 30%   | Pass  |  |
| Toluene                             | M17-JI11965       | CP   | mg/L     | < 0.001   | < 0.001   | <1  | 30%   | Pass  |  |
| Ethylbenzene                        | M17-JI11965       | CP   | mg/L     | < 0.001   | < 0.001   | <1  | 30%   | Pass  |  |
| m&p-Xylenes                         | M17-JI11965       | CP   | mg/L     | < 0.002   | < 0.002   | <1  | 30%   | Pass  |  |
| o-Xylene                            | M17-JI11965       | CP   | mg/L     | < 0.002   | < 0.002   | <1  | 30%   | Pass  |  |
| Xylenes - Total                     | M17-JI11965       | CP   | mg/L     | < 0.003   | < 0.003   | <1  | 30%   | Pass  |  |
| Duplicate                           | 10117-0111903     |      | ı iliy/L | \ \ 0.003 | _ \ 0.003 |     | 30 /0 | 1 033 |  |
| Total Recoverable Hydrocarbons      | 2012 NEDM Front   | ione |          | Result 1  | Result 2  | RPD |       | T     |  |
|                                     |                   | CP   |          |           |           |     | 30%   | Door  |  |
| Naphthalene                         | M17-JI11965       |      | mg/L     | < 0.01    | < 0.01    | <1  |       | Pass  |  |
| TRH C6-C10                          | M17-JI11965       | CP   | mg/L     | < 0.02    | < 0.02    | <1  | 30%   | Pass  |  |



#### Comments

### Sample Integrity

| Custody Seals Intact (if used)                                          | N/A |
|-------------------------------------------------------------------------|-----|
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |
|                                                                         |     |

#### **Qualifier Codes/Comments**

| Code | Description |
|------|-------------|
|      |             |

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Quantification of linear and branched isomers has been conducted as a single total response using the relative response factor for the corresponding linear/branched standard.

Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds. Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation).

#### **Authorised By**

N02

N09

N11

Robert Johnston Analytical Services Manager Alex Petridis Senior Analyst-Metal (VIC) Alex Petridis Senior Analyst-Organic (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Senior Analyst-Inorganic (VIC) Huong Le Jonathon Angell Senior Analyst-Organic (QLD) Joseph Edouard Senior Analyst-Organic (VIC)



#### Glenn Jackson

#### **National Operations Manager**

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Img shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins I mgt be liable for consequential clampas including, but no limited to, lost profits, damages for eliable to meet deadlines and lost production arising from this report. This document shall be reported everage in full and retales only to the lems tested. Unless indicated otherwise, the tests were performed on the samples as received.



### **CERTIFICATE OF ANALYSIS**

**Work Order** : EP1707310

Client GOLDER ASSOCIATES

Contact : SARAH GARVEY

Address : PO BOX 1914

WEST PERTH WA 6872

Telephone : +61 08 9213 7600

Project : 1779954

Order number : 1779954 [Q00186]

C-O-C number : Q00186

Sampler Site

Quote number : EN/002/16 v2

No. of samples received : 2 No. of samples analysed : 2 Page : 1 of 8

> Laboratory : Environmental Division Perth

Contact : Luke Jones

Address : 10 Hod Way Malaga WA Australia 6090

Telephone : 08 9209 7631 Date Samples Received : 10-Jul-2017 17:00

Date Analysis Commenced : 10-Jul-2017

Issue Date : 18-Jul-2017 16:05



Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.** 

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories    | Position                            | Accreditation Category             |
|----------------|-------------------------------------|------------------------------------|
| Alex Rossi     | Organic Chemist                     | Sydney Organics, Smithfield, NSW   |
| Ashesh Patel   | Inorganic Chemist                   | Sydney Inorganics, Smithfield, NSW |
| Efua Wilson    | Metals Chemist                      | Perth Inorganics, Malaga, WA       |
| Greg Vogel     | Laboratory Manager                  | Brisbane Organics, Stafford, QLD   |
| Indra Astuty   | Instrument Chemist                  | Perth Inorganics, Malaga, WA       |
| Jeremy Truong  | Laboratory Manager                  | Perth Inorganics, Malaga, WA       |
| ShukHui Li     | Client Services - Technical Manager | Perth Organics, Malaga, WA         |
| Tyrone Cole    | Inorganics Preparation Supervisor   | Perth Inorganics, Malaga, WA       |
| Vanessa Nguyen | Organic Chemist                     | Perth Organics, Malaga, WA         |
|                |                                     |                                    |

Page : 2 of 8 Work Order : EP1707310

Client : GOLDER ASSOCIATES

Project : 1779954

### General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- PFAS and chemical oxygen demand analyses conducted by ALS Sydney, NATA accreditation no. 825, site no 10911.
- EA015H (Total Dissolved Solids): TDS for sample 'Q00186-01' biasing high due to possible sample matrix interferences.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.



Page : 3 of 8
Work Order : EP1707310

Client : GOLDER ASSOCIATES

Project : 1779954



| Sub-Matrix: WATER<br>(Matrix: WATER)  |               | Clie         | ent sample ID  | Q00186-01         | Q00186-02         | <br> |  |
|---------------------------------------|---------------|--------------|----------------|-------------------|-------------------|------|--|
|                                       | C             | lient sampli | ng date / time | 10-Jul-2017 00:00 | 10-Jul-2017 00:00 | <br> |  |
| Compound                              | CAS Number    | LOR          | Unit           | EP1707310-001     | EP1707310-002     | <br> |  |
|                                       |               |              |                | Result            | Result            | <br> |  |
| EA005P: pH by PC Titrator             |               |              |                |                   |                   |      |  |
| pH Value                              |               | 0.01         | pH Unit        | 4.24              |                   | <br> |  |
| EA010P: Conductivity by PC Titrator   |               |              |                |                   |                   |      |  |
| Electrical Conductivity @ 25°C        |               | 1            | μS/cm          | 412               |                   | <br> |  |
| EA015: Total Dissolved Solids dried a | at 180 ± 5 °C |              |                |                   |                   |      |  |
| Total Dissolved Solids @180°C         |               | 10           | mg/L           | 676               |                   | <br> |  |
| EA065: Total Hardness as CaCO3        |               |              |                |                   |                   |      |  |
| Total Hardness as CaCO3               |               | 1            | mg/L           | 54                |                   | <br> |  |
| ED037P: Alkalinity by PC Titrator     |               |              | -              |                   |                   |      |  |
| Hydroxide Alkalinity as CaCO3         | DMO-210-001   | 1            | mg/L           | <1                |                   | <br> |  |
| Carbonate Alkalinity as CaCO3         | 3812-32-6     | 1            | mg/L           | <1                |                   | <br> |  |
| Bicarbonate Alkalinity as CaCO3       | 71-52-3       | 1            | mg/L           | <1                |                   | <br> |  |
| Total Alkalinity as CaCO3             |               | 1            | mg/L           | <1                |                   | <br> |  |
| ED041G: Sulfate (Turbidimetric) as S  | 04.2- by DA   |              |                |                   |                   |      |  |
| Sulfate as SO4 - Turbidimetric        | 14808-79-8    | 1            | mg/L           | 36                |                   | <br> |  |
| ED045G: Chloride by Discrete Analys   |               |              | 3              |                   |                   |      |  |
| Chloride                              | 16887-00-6    | 1            | mg/L           | 88                |                   | <br> |  |
| ED093F: Dissolved Major Cations       | 10007 00 0    |              | g              |                   |                   |      |  |
| Calcium                               | 7440-70-2     | 1            | mg/L           | 5                 |                   | <br> |  |
| Magnesium                             | 7439-95-4     | 1            | mg/L           | 10                |                   | <br> |  |
| Sodium                                | 7440-23-5     | 1            | mg/L           | 40                |                   | <br> |  |
| Potassium                             | 7440-09-7     | 1            | mg/L           | 26                |                   | <br> |  |
| EG020F: Dissolved Metals by ICP-MS    |               |              | J.             |                   |                   |      |  |
| Aluminium                             | 7429-90-5     | 0.01         | mg/L           | 0.65              |                   | <br> |  |
| Arsenic                               | 7440-38-2     | 0.001        | mg/L           | <0.001            |                   | <br> |  |
| Cadmium                               | 7440-43-9     | 0.0001       | mg/L           | <0.0001           |                   | <br> |  |
| Chromium                              | 7440-47-3     | 0.001        | mg/L           | 0.005             |                   | <br> |  |
| Copper                                | 7440-50-8     | 0.001        | mg/L           | 0.004             |                   | <br> |  |
| Nickel                                | 7440-02-0     | 0.001        | mg/L           | 0.004             |                   | <br> |  |
| Lead                                  | 7439-92-1     | 0.001        | mg/L           | 0.002             |                   | <br> |  |
| Zinc                                  | 7440-66-6     | 0.005        | mg/L           | 0.032             |                   | <br> |  |
| Iron                                  | 7439-89-6     | 0.05         | mg/L           | 2.84              |                   | <br> |  |
| EG035F: Dissolved Mercury by FIMS     |               |              |                |                   |                   |      |  |
| Mercury                               | 7439-97-6     | 0.0001       | mg/L           | <0.0001           |                   | <br> |  |

Page : 4 of 8
Work Order : EP1707310

Client : GOLDER ASSOCIATES

Project : 1779954



| Sub-Matrix: WATER                  |                           | Client sample ID       | Q00186-01         | Q00186-02         | <br>              |  |
|------------------------------------|---------------------------|------------------------|-------------------|-------------------|-------------------|--|
| Matrix: WATER)                     |                           | CC Gampio ID           | Q00100-01         | Q00100-02         | <br>_ <del></del> |  |
|                                    | Clien                     | t sampling date / time | 10-Jul-2017 00:00 | 10-Jul-2017 00:00 | <br>              |  |
| Compound                           | CAS Number                | LOR Unit               | EP1707310-001     | EP1707310-002     | <br>              |  |
|                                    |                           |                        | Result            | Result            | <br>              |  |
| K055G: Ammonia as N by Discret     | e Analyser                |                        |                   |                   |                   |  |
| Ammonia as N                       | 7664-41-7                 | 0.01 mg/L              | 0.66              |                   | <br>              |  |
| K057G: Nitrite as N by Discrete A  | Analyser                  |                        |                   |                   |                   |  |
| Nitrite as N                       | 14797-65-0                | 0.01 mg/L              | <0.01             |                   | <br>              |  |
| K058G: Nitrate as N by Discrete    | Analyser                  |                        |                   |                   |                   |  |
| Nitrate as N                       | 14797-55-8                | 0.01 mg/L              | 0.05              |                   | <br>              |  |
| K059G: Nitrite plus Nitrate as N ( | NOx) by Discrete Analys   | ser                    |                   |                   |                   |  |
| Nitrite + Nitrate as N             |                           | 0.01 mg/L              | 0.05              |                   | <br>              |  |
| K061G: Total Kjeldahl Nitrogen B   | y Discrete Analyser       |                        |                   |                   |                   |  |
| Total Kjeldahl Nitrogen as N       |                           | 0.1 mg/L               | 6.6               |                   | <br>              |  |
| K062G: Total Nitrogen as N (TKN    | + NOx) by Discrete Analy  | yser                   |                   |                   |                   |  |
| Total Nitrogen as N                |                           | 0.1 mg/L               | 6.6               |                   | <br>              |  |
| K067G: Total Phosphorus as P by    | / Discrete Analyser       |                        |                   |                   |                   |  |
| Total Phosphorus as P              |                           | 0.01 mg/L              | 11.9              |                   | <br>              |  |
| K071G: Reactive Phosphorus as      | P by discrete analyser    |                        |                   |                   |                   |  |
| Reactive Phosphorus as P           |                           | 0.01 mg/L              | 11.7              |                   | <br>              |  |
| N055: Ionic Balance                |                           |                        |                   |                   |                   |  |
| Total Anions                       |                           | 0.01 meq/L             | 3.23              |                   | <br>              |  |
| Total Cations                      |                           | 0.01 meq/L             | 3.48              |                   | <br>              |  |
| Ionic Balance                      |                           | 0.01 %                 | 3.66              |                   | <br>              |  |
| P005: Total Organic Carbon (TOC    | 5)                        |                        |                   |                   |                   |  |
| Total Organic Carbon               |                           | 1 mg/L                 | 132               |                   | <br>              |  |
| P026SP: Chemical Oxygen Dema       | nd (Spectrophotometric)   |                        |                   |                   |                   |  |
| Chemical Oxygen Demand             |                           | 10 mg/L                | 574               |                   | <br>              |  |
| P030: Biochemical Oxygen Dema      | nd (BOD)                  |                        |                   |                   |                   |  |
| Biochemical Oxygen Demand          |                           | 2 mg/L                 | 25                |                   | <br>              |  |
| P071 SG: Total Petroleum Hydrod    | arbons - Silica gel clean | up                     |                   |                   |                   |  |
| C10 - C14 Fraction                 |                           | 50 μg/L                | <50               |                   | <br>              |  |
| C15 - C28 Fraction                 |                           | 100 μg/L               | <100              |                   | <br>              |  |
| C29 - C36 Fraction                 |                           | 50 μg/L                | <50               |                   | <br>              |  |
| C10 - C36 Fraction (sum)           |                           | 50 μg/L                | <50               |                   | <br>              |  |
| P071 SG: Total Recoverable Hydi    | ocarbons - NEPM 2013 F    | ractions - Silica gel  | cleanup           |                   |                   |  |
| >C10 - C16 Fraction                |                           | 100 μg/L               | <100              |                   | <br>              |  |
| >C16 - C34 Fraction                |                           | 100 μg/L               | <100              |                   | <br>              |  |

Page : 5 of 8
Work Order : EP1707310

Client : GOLDER ASSOCIATES

Project : 1779954



| ub-Matrix: WATER<br>Matrix: WATER)     |                   | Clie        | ent sample ID     | Q00186-01          | Q00186-02         | <del></del> | <br> |
|----------------------------------------|-------------------|-------------|-------------------|--------------------|-------------------|-------------|------|
| · · · · · · · · · · · · · · · · · · ·  | CI                | ient sampli | ng date / time    | 10-Jul-2017 00:00  | 10-Jul-2017 00:00 |             | <br> |
| Compound                               | CAS Number        | LOR         | Unit              | EP1707310-001      | EP1707310-002     |             | <br> |
| •                                      |                   |             |                   | Result             | Result            |             | <br> |
| P071 SG: Total Recoverable Hydroca     | arbons - NEPM 201 | 3 Fraction  | ıs - Silica gel c | leanup - Continued |                   |             |      |
| >C34 - C40 Fraction                    |                   | 100         | μg/L              | <100               |                   |             | <br> |
| >C10 - C40 Fraction (sum)              |                   | 100         | μg/L              | <100               |                   |             | <br> |
| >C10 - C16 Fraction minus Naphthalene  |                   | 100         | μg/L              | <100               |                   |             | <br> |
| (F2)                                   |                   |             |                   |                    |                   |             |      |
| P075(SIM)A: Phenolic Compounds         |                   |             |                   |                    |                   |             |      |
| Phenol                                 | 108-95-2          | 1           | μg/L              | <1.0               |                   |             | <br> |
| 2-Chlorophenol                         | 95-57-8           | 1           | μg/L              | <1.0               |                   |             | <br> |
| 2-Methylphenol                         | 95-48-7           | 1           | μg/L              | <1.0               |                   |             | <br> |
| 3- & 4-Methylphenol                    | 1319-77-3         | 2           | μg/L              | <2.0               |                   |             | <br> |
| 2-Nitrophenol                          | 88-75-5           | 1           | μg/L              | <1.0               |                   |             | <br> |
| 2.4-Dimethylphenol                     | 105-67-9          | 1           | μg/L              | <1.0               |                   |             | <br> |
| 2.4-Dichlorophenol                     | 120-83-2          | 1           | μg/L              | <1.0               |                   |             | <br> |
| 2.6-Dichlorophenol                     | 87-65-0           | 1           | μg/L              | <1.0               |                   |             | <br> |
| 4-Chloro-3-methylphenol                | 59-50-7           | 1           | μg/L              | <1.0               |                   |             | <br> |
| 2.4.6-Trichlorophenol                  | 88-06-2           | 1           | μg/L              | <1.0               |                   |             | <br> |
| 2.4.5-Trichlorophenol                  | 95-95-4           | 1           | μg/L              | <1.0               |                   |             | <br> |
| Pentachlorophenol                      | 87-86-5           | 2           | μg/L              | <2.0               |                   |             | <br> |
| EP075(SIM)B: Polynuclear Aromatic H    | lydrocarbons      |             |                   |                    |                   |             |      |
| Naphthalene                            | 91-20-3           | 1           | μg/L              | <1.0               |                   |             | <br> |
| Acenaphthylene                         | 208-96-8          | 1           | μg/L              | <1.0               |                   |             | <br> |
| Acenaphthene                           | 83-32-9           | 1           | μg/L              | <1.0               |                   |             | <br> |
| Fluorene                               | 86-73-7           | 1           | μg/L              | <1.0               |                   |             | <br> |
| Phenanthrene                           | 85-01-8           | 1           | μg/L              | <1.0               |                   |             | <br> |
| Anthracene                             | 120-12-7          | 1           | μg/L              | <1.0               |                   |             | <br> |
| Fluoranthene                           | 206-44-0          | 1           | μg/L              | <1.0               |                   |             | <br> |
| Pyrene                                 | 129-00-0          | 1           | μg/L              | <1.0               |                   |             | <br> |
| Benz(a)anthracene                      | 56-55-3           | 1           | μg/L              | <1.0               |                   |             | <br> |
| Chrysene                               | 218-01-9          | 1           | μg/L              | <1.0               |                   |             | <br> |
| Benzo(b+j)fluoranthene                 | 205-99-2 205-82-3 | 1           | μg/L              | <1.0               |                   |             | <br> |
| Benzo(k)fluoranthene                   | 207-08-9          | 1           | μg/L              | <1.0               |                   |             | <br> |
| Benzo(a)pyrene                         | 50-32-8           | 0.5         | μg/L              | <0.5               |                   |             | <br> |
| Indeno(1.2.3.cd)pyrene                 | 193-39-5          | 1           | μg/L              | <1.0               |                   |             | <br> |
| Dibenz(a.h)anthracene                  | 53-70-3           | 1           | μg/L              | <1.0               |                   |             | <br> |
| Benzo(g.h.i)perylene                   | 191-24-2          | 1           | μg/L              | <1.0               |                   |             | <br> |
| Sum of polycyclic aromatic hydrocarbor | ns                | 0.5         | μg/L              | <0.5               |                   |             | <br> |

Page : 6 of 8 : EP1707310 Work Order

Client : GOLDER ASSOCIATES

: 1779954 Project



| Sub-Matrix: WATER (Matrix: WATER)       |                    | Cli        | ent sample ID   | Q00186-01         | Q00186-02         | <br> |  |
|-----------------------------------------|--------------------|------------|-----------------|-------------------|-------------------|------|--|
|                                         | Cli                | ent sampli | ing date / time | 10-Jul-2017 00:00 | 10-Jul-2017 00:00 | <br> |  |
| Compound                                | CAS Number         | LOR        | Unit            | EP1707310-001     | EP1707310-002     | <br> |  |
| •                                       |                    |            |                 | Result            | Result            | <br> |  |
| EP075(SIM)B: Polynuclear Aromatic Hy    | ydrocarbons - Cont | inued      |                 |                   |                   |      |  |
| ^ Benzo(a)pyrene TEQ (zero)             |                    | 0.5        | μg/L            | <0.5              |                   | <br> |  |
| EP080/071: Total Petroleum Hydrocarb    | oons               |            |                 |                   |                   |      |  |
| C6 - C9 Fraction                        |                    | 20         | μg/L            | <20               | <20               | <br> |  |
| C10 - C14 Fraction                      |                    | 50         | μg/L            | <50               |                   | <br> |  |
| C15 - C28 Fraction                      |                    | 100        | μg/L            | <100              |                   | <br> |  |
| C29 - C36 Fraction                      |                    | 50         | μg/L            | <50               |                   | <br> |  |
| ^ C10 - C36 Fraction (sum)              |                    | 50         | μg/L            | <50               |                   | <br> |  |
| EP080/071: Total Recoverable Hydroca    | arbons - NEPM 201  | 3 Fractio  | ns              |                   |                   |      |  |
| C6 - C10 Fraction                       | C6_C10             | 20         | μg/L            | <20               | <20               | <br> |  |
| ^ C6 - C10 Fraction minus BTEX          | C6_C10-BTEX        | 20         | μg/L            | <20               | <20               | <br> |  |
| (F1)                                    |                    |            |                 |                   |                   |      |  |
| >C10 - C16 Fraction                     |                    | 100        | μg/L            | <100              |                   | <br> |  |
| >C16 - C34 Fraction                     |                    | 100        | μg/L            | <100              |                   | <br> |  |
| >C34 - C40 Fraction                     |                    | 100        | μg/L            | <100              |                   | <br> |  |
| ^ >C10 - C40 Fraction (sum)             |                    | 100        | μg/L            | <100              |                   | <br> |  |
| ^ >C10 - C16 Fraction minus Naphthalene |                    | 100        | μg/L            | <100              |                   | <br> |  |
| (F2)                                    |                    |            |                 |                   |                   |      |  |
| EP080: BTEXN                            |                    |            |                 |                   |                   |      |  |
| Benzene                                 | 71-43-2            | 1          | μg/L            | <1                | <1                | <br> |  |
| Toluene                                 | 108-88-3           | 2          | μg/L            | <2                | <2                | <br> |  |
| Ethylbenzene                            | 100-41-4           | 2          | μg/L            | <2                | <2                | <br> |  |
| meta- & para-Xylene                     | 108-38-3 106-42-3  | 2          | μg/L            | <2                | <2                | <br> |  |
| ortho-Xylene                            | 95-47-6            | 2          | μg/L            | <2                | <2                | <br> |  |
| ^ Total Xylenes                         | 1330-20-7          | 2          | μg/L            | <2                | <2                | <br> |  |
| ^ Sum of BTEX                           |                    | 1          | μg/L            | <1                | <1                | <br> |  |
| Naphthalene                             | 91-20-3            | 5          | μg/L            | <5                | <5                | <br> |  |
| EP231A: Perfluoroalkyl Sulfonic Acids   |                    |            |                 |                   |                   |      |  |
| Perfluorobutane sulfonic acid (PFBS)    | 375-73-5           | 0.02       | μg/L            | <0.02             |                   | <br> |  |
| Perfluorohexane sulfonic acid (PFHxS)   | 355-46-4           | 0.02       | μg/L            | <0.02             |                   | <br> |  |
| Perfluorooctane sulfonic acid (PFOS)    | 1763-23-1          | 0.01       | μg/L            | <0.01             |                   | <br> |  |
| EP231B: Perfluoroalkyl Carboxylic Ac    | ids                |            |                 |                   |                   |      |  |

Page : 7 of 8
Work Order : EP1707310

Client : GOLDER ASSOCIATES

Project : 1779954



| EP231B: Perfluoroalkyl Carboxylic Acids - (Perfluorobutanoic acid (PFBA)  Perfluoropentanoic acid (PFPeA)  Perfluorohexanoic acid (PFHxA)  Perfluoroheptanoic acid (PFHpA)  Perfluoroctanoic acid (PFOA)  EP231D: (n:2) Fluorotelomer Sulfonic Acids 4:2 Fluorotelomer sulfonic acid | CAS Number                                                 | 0.1<br>0.02<br>0.02<br>0.02 | Unit  Ug/L  µg/L  µg/L  µg/L | 10-Jul-2017 00:00  EP1707310-001  Result  <0.1  <0.02 | 10-Jul-2017 00:00<br>EP1707310-002<br>Result | <br> |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------|------------------------------|-------------------------------------------------------|----------------------------------------------|------|--|
| EP231B: Perfluoroalkyl Carboxylic Acids - ( Perfluorobutanoic acid (PFBA)  Perfluoropentanoic acid (PFPeA)  Perfluorohexanoic acid (PFHxA)  Perfluoroheptanoic acid (PFHpA)  Perfluorooctanoic acid (PFOA)  EP231D: (n:2) Fluorotelomer Sulfonic Acids                               | Continued<br>375-22-4<br>2706-90-3<br>307-24-4<br>375-85-9 | 0.1<br>0.02<br>0.02<br>0.02 | µg/L<br>µg/L                 | Result                                                | Result                                       |      |  |
| Perfluorobutanoic acid (PFBA) Perfluoropentanoic acid (PFPeA) Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) EP231D: (n:2) Fluorotelomer Sulfonic Acids                                                                                | 375-22-4<br>2706-90-3<br>307-24-4<br>375-85-9              | 0.02<br>0.02<br>0.02        | μg/L                         | <0.1                                                  |                                              | <br> |  |
| Perfluorobutanoic acid (PFBA) Perfluoropentanoic acid (PFPeA) Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) EP231D: (n:2) Fluorotelomer Sulfonic Acids                                                                                | 375-22-4<br>2706-90-3<br>307-24-4<br>375-85-9              | 0.02<br>0.02<br>0.02        | μg/L                         |                                                       |                                              |      |  |
| Perfluoropentanoic acid (PFPeA) Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) EP231D: (n:2) Fluorotelomer Sulfonic Acids                                                                                                              | 2706-90-3<br>307-24-4<br>375-85-9                          | 0.02<br>0.02<br>0.02        | μg/L                         |                                                       |                                              |      |  |
| Perfluorohexanoic acid (PFHxA)  Perfluoroheptanoic acid (PFHpA)  Perfluorooctanoic acid (PFOA)  EP231D: (n:2) Fluorotelomer Sulfonic Acids                                                                                                                                           | 307-24-4<br>375-85-9                                       | 0.02<br>0.02                | -                            | <0.02                                                 |                                              | <br> |  |
| Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) EP231D: (n:2) Fluorotelomer Sulfonic Acids                                                                                                                                                                             | 375-85-9                                                   | 0.02                        | ua/l                         | -0.0 <u>Z</u>                                         |                                              | <br> |  |
| Perfluorooctanoic acid (PFOA) EP231D: (n:2) Fluorotelomer Sulfonic Acids                                                                                                                                                                                                             |                                                            |                             | µg/L                         | <0.02                                                 |                                              | <br> |  |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids                                                                                                                                                                                                                                           | 335-67-1                                                   |                             | μg/L                         | <0.02                                                 |                                              | <br> |  |
|                                                                                                                                                                                                                                                                                      |                                                            | 0.01                        | μg/L                         | <0.01                                                 |                                              | <br> |  |
| 4.2 Eluaratalaman aulfania aaid                                                                                                                                                                                                                                                      | ls                                                         |                             |                              |                                                       |                                              |      |  |
| (4:2 FTS)                                                                                                                                                                                                                                                                            | 757124-72-4                                                | 0.05                        | μg/L                         | <0.05                                                 |                                              | <br> |  |
| 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                                                                                                                                                                                                                                            | 27619-97-2                                                 | 0.05                        | μg/L                         | <0.05                                                 |                                              | <br> |  |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS)                                                                                                                                                                                                                                         | 39108-34-4                                                 | 0.05                        | μg/L                         | <0.05                                                 |                                              | <br> |  |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                                                                                                                                                                                                                                          | 120226-60-0                                                | 0.05                        | μg/L                         | <0.05                                                 |                                              | <br> |  |
| EP231P: PFAS Sums                                                                                                                                                                                                                                                                    |                                                            |                             |                              |                                                       |                                              |      |  |
| Sum of PFHxS and PFOS 355-                                                                                                                                                                                                                                                           | -46-4/1763-23-<br>1                                        | 0.01                        | μg/L                         | <0.01                                                 |                                              | <br> |  |
| Sum of PFAS (WA DER List)                                                                                                                                                                                                                                                            |                                                            | 0.01                        | μg/L                         | <0.01                                                 |                                              | <br> |  |
| EP075(SIM)S: Phenolic Compound Surrogate                                                                                                                                                                                                                                             | ates                                                       |                             |                              |                                                       |                                              |      |  |
| Phenol-d6                                                                                                                                                                                                                                                                            | 13127-88-3                                                 | 1                           | %                            | 18.0                                                  |                                              | <br> |  |
| 2-Chlorophenol-D4                                                                                                                                                                                                                                                                    | 93951-73-6                                                 | 1                           | %                            | 66.8                                                  |                                              | <br> |  |
| 2.4.6-Tribromophenol                                                                                                                                                                                                                                                                 | 118-79-6                                                   | 1                           | %                            | 78.8                                                  |                                              | <br> |  |
| EP075(SIM)T: PAH Surrogates                                                                                                                                                                                                                                                          |                                                            |                             |                              |                                                       |                                              |      |  |
| 2-Fluorobiphenyl                                                                                                                                                                                                                                                                     | 321-60-8                                                   | 1                           | %                            | 64.0                                                  |                                              | <br> |  |
| Anthracene-d10                                                                                                                                                                                                                                                                       | 1719-06-8                                                  | 1                           | %                            | 73.6                                                  |                                              | <br> |  |
| 4-Terphenyl-d14                                                                                                                                                                                                                                                                      | 1718-51-0                                                  | 1                           | %                            | 93.1                                                  |                                              | <br> |  |
| EP080S: TPH(V)/BTEX Surrogates                                                                                                                                                                                                                                                       |                                                            |                             |                              |                                                       |                                              |      |  |
| 1.2-Dichloroethane-D4                                                                                                                                                                                                                                                                | 17060-07-0                                                 | 2                           | %                            | 97.2                                                  | 98.0                                         | <br> |  |
| Toluene-D8                                                                                                                                                                                                                                                                           | 2037-26-5                                                  | 2                           | %                            | 97.3                                                  | 98.0                                         | <br> |  |
| 4-Bromofluorobenzene                                                                                                                                                                                                                                                                 | 460-00-4                                                   | 2                           | %                            | 102                                                   | 101                                          | <br> |  |
| EP231S: PFAS Surrogate                                                                                                                                                                                                                                                               |                                                            |                             |                              |                                                       |                                              |      |  |
| 13C4-PFOS                                                                                                                                                                                                                                                                            |                                                            | 0.02                        | %                            | 82.3                                                  |                                              | <br> |  |

Page : 8 of 8
Work Order : EP1707310

Client : GOLDER ASSOCIATES

Project : 1779954

### Surrogate Control Limits

| Sub-Matrix: WATER                         |            | Recovery | Limits (%) |
|-------------------------------------------|------------|----------|------------|
| Compound                                  | CAS Number | Low      | High       |
| EP075(SIM)S: Phenolic Compound Surrogates |            |          |            |
| Phenol-d6                                 | 13127-88-3 | 10       | 67         |
| 2-Chlorophenol-D4                         | 93951-73-6 | 29       | 120        |
| 2.4.6-Tribromophenol                      | 118-79-6   | 10       | 131        |
| EP075(SIM)T: PAH Surrogates               |            |          |            |
| 2-Fluorobiphenyl                          | 321-60-8   | 34       | 131        |
| Anthracene-d10                            | 1719-06-8  | 43       | 127        |
| 4-Terphenyl-d14                           | 1718-51-0  | 41       | 142        |
| EP080S: TPH(V)/BTEX Surrogates            |            |          |            |
| 1.2-Dichloroethane-D4                     | 17060-07-0 | 61       | 141        |
| Toluene-D8                                | 2037-26-5  | 73       | 126        |
| 4-Bromofluorobenzene                      | 460-00-4   | 60       | 125        |
| EP231S: PFAS Surrogate                    |            |          |            |
| 13C4-PFOS                                 |            | 60       | 130        |





### **QUALITY CONTROL REPORT**

· EP1707310 Work Order

Client GOLDER ASSOCIATES Laboratory : Environmental Division Perth

Contact : SARAH GARVEY

Address Address : PO BOX 1914

WEST PERTH WA 6872

Telephone : +61 08 9213 7600

Project : 1779954

Order number : 1779954 [Q00186]

C-O-C number : Q00186

Sampler Site

Quote number : EN/002/16 v2


No. of samples received : 2 No. of samples analysed : 2 Page : 1 of 13

Contact : Luke Jones

: 10 Hod Way Malaga WA Australia 6090

Telephone : 08 9209 7631 Date Samples Received : 10-Jul-2017 **Date Analysis Commenced** : 10-Jul-2017

· 18-Jul-2017 Issue Date



Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories    | Position                            | Accreditation Category             |
|----------------|-------------------------------------|------------------------------------|
| Alex Rossi     | Organic Chemist                     | Sydney Organics, Smithfield, NSW   |
| Ashesh Patel   | Inorganic Chemist                   | Sydney Inorganics, Smithfield, NSW |
| Efua Wilson    | Metals Chemist                      | Perth Inorganics, Malaga, WA       |
| Greg Vogel     | Laboratory Manager                  | Brisbane Organics, Stafford, QLD   |
| Indra Astuty   | Instrument Chemist                  | Perth Inorganics, Malaga, WA       |
| Jeremy Truong  | Laboratory Manager                  | Perth Inorganics, Malaga, WA       |
| ShukHui Li     | Client Services - Technical Manager | Perth Organics, Malaga, WA         |
| Tyrone Cole    | Inorganics Preparation Supervisor   | Perth Inorganics, Malaga, WA       |
| Vanessa Nguyen | Organic Chemist                     | Perth Organics, Malaga, WA         |
|                |                                     |                                    |

Page : 2 of 13 Work Order : EP1707310

Client : GOLDER ASSOCIATES

Project : 1779954



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: WATER                                    |                                |                                          |             | Laboratory Duplicate (DUP) Report |         |                 |                  |         |                     |
|------------------------------------------------------|--------------------------------|------------------------------------------|-------------|-----------------------------------|---------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID                                 | Client sample ID               | Method: Compound                         | CAS Number  | LOR                               | Unit    | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EA005P: pH by PC Titrator (QC Lot: 989778)           |                                |                                          |             |                                   |         |                 |                  |         |                     |
| EP1707280-002                                        | Anonymous                      | EA005-P: pH Value                        |             | 0.01                              | pH Unit | 6.92            | 6.95             | 0.432   | 0% - 20%            |
| EP1707316-001                                        | Anonymous                      | EA005-P: pH Value                        |             | 0.01                              | pH Unit | 7.68            | 7.71             | 0.390   | 0% - 20%            |
| EA010P: Conductivity by PC Titrator (QC Lot: 989774) |                                |                                          |             |                                   |         |                 |                  |         |                     |
| EP1707255-001                                        | Anonymous                      | EA010-P: Electrical Conductivity @ 25°C  |             | 1                                 | μS/cm   | <1              | <1               | 0.00    | No Limit            |
| EP1707266-003                                        | Anonymous                      | EA010-P: Electrical Conductivity @ 25°C  |             | 1                                 | μS/cm   | 67              | 66               | 0.00    | 0% - 20%            |
| EA015: Total Dissol                                  | ved Solids dried at 180 ± 5 °C | C (QC Lot: 999377)                       |             |                                   |         |                 |                  |         |                     |
| EP1707310-001                                        | Q00186-01                      | EA015H: Total Dissolved Solids @180°C    |             | 10                                | mg/L    | 676             | 670              | 0.892   | 0% - 20%            |
| EP1707367-001                                        | Anonymous                      | EA015H: Total Dissolved Solids @180°C    |             | 10                                | mg/L    | 4970            | 4950             | 0.444   | 0% - 20%            |
| ED037P: Alkalinity b                                 | y PC Titrator (QC Lot: 9897    | 79)                                      |             |                                   |         |                 |                  |         |                     |
| EP1707316-001                                        | Anonymous                      | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1                                 | mg/L    | <1              | <1               | 0.00    | No Limit            |
|                                                      |                                | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1                                 | mg/L    | <1              | <1               | 0.00    | No Limit            |
|                                                      |                                | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1                                 | mg/L    | 120             | 118              | 2.04    | 0% - 20%            |
|                                                      |                                | ED037-P: Total Alkalinity as CaCO3       |             | 1                                 | mg/L    | 120             | 118              | 2.04    | 0% - 20%            |
| EP1707321-002                                        | Anonymous                      | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1                                 | mg/L    | <1              | <1               | 0.00    | No Limit            |
|                                                      |                                | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1                                 | mg/L    | <1              | <1               | 0.00    | No Limit            |
|                                                      |                                | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1                                 | mg/L    | 285             | 300              | 5.05    | 0% - 20%            |
|                                                      |                                | ED037-P: Total Alkalinity as CaCO3       |             | 1                                 | mg/L    | 285             | 300              | 5.05    | 0% - 20%            |
| ED041G: Sulfate (Tu                                  | rbidimetric) as SO4 2- by DA   | A (QC Lot: 988774)                       |             |                                   |         |                 |                  |         |                     |
| EP1707303-001                                        | Anonymous                      | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1                                 | mg/L    | 1430            | 1500             | 4.41    | 0% - 20%            |
| EP1707314-004                                        | Anonymous                      | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1                                 | mg/L    | 32              | 31               | 3.25    | 0% - 20%            |
| ED045G: Chloride b                                   | y Discrete Analyser (QC Lot    | : 988770)                                |             |                                   |         |                 |                  |         |                     |
| EP1707297-007                                        | Anonymous                      | ED045G: Chloride                         | 16887-00-6  | 1                                 | mg/L    | 177             | 177              | 0.00    | 0% - 20%            |
| EP1707314-004                                        | Anonymous                      | ED045G: Chloride                         | 16887-00-6  | 1                                 | mg/L    | 116             | 113              | 3.02    | 0% - 20%            |
| ED093F: Dissolved                                    | Major Cations (QC Lot: 9970    | 062)                                     |             |                                   |         |                 |                  |         |                     |
|                                                      |                                |                                          |             |                                   |         |                 |                  |         |                     |

Page : 3 of 13 Work Order : EP1707310

Client : GOLDER ASSOCIATES



| Sub-Matrix: WATER              |                        |                                      |            |                                         |              | Laboratory      | Duplicate (DUP) Report |         |                     |
|--------------------------------|------------------------|--------------------------------------|------------|-----------------------------------------|--------------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID           | Client sample ID       | Method: Compound                     | CAS Number | LOR                                     | Unit         | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| ED093F: Dissolved              | Major Cations (QC Lot  | : 997062) - continued                |            |                                         |              |                 |                        |         |                     |
| EP1707072-001                  | Anonymous              | ED093F: Calcium                      | 7440-70-2  | Laboratory Duplicate (DUP) Report   LOR | 0% - 20%     |                 |                        |         |                     |
|                                |                        | ED093F: Magnesium                    | 7439-95-4  | 1                                       | mg/L         | 30              | 30                     | 0.00    | 0% - 20%            |
|                                |                        | ED093F: Sodium                       | 7440-23-5  | 1                                       | mg/L         | 150             | 148                    | 1.02    | 0% - 20%            |
|                                |                        | ED093F: Potassium                    | 7440-09-7  | 1                                       | mg/L         | 13              | 13                     | 0.00    | 0% - 50%            |
| EP1707367-001                  | Anonymous              | ED093F: Calcium                      | 7440-70-2  | 1                                       | mg/L         | 44              | 44                     | 0.00    | 0% - 20%            |
|                                |                        | ED093F: Magnesium                    | 7439-95-4  | 1                                       | mg/L         | 157             | 158                    | 0.00    | 0% - 20%            |
|                                |                        | ED093F: Sodium                       | 7440-23-5  | 1                                       | mg/L         | 1530            | 1530                   | 0.105   | 0% - 20%            |
|                                |                        | ED093F: Potassium                    | 7440-09-7  | 1                                       | mg/L         | 64              | 65                     | 0.00    | 0% - 20%            |
| G020F: Dissolved               | Metals by ICP-MS (QC   | Lot: 997063)                         |            |                                         |              |                 |                        |         |                     |
| EP1707367-008                  | Anonymous              | EG020A-F: Cadmium                    | 7440-43-9  | 0.0001                                  | mg/L         | <0.0001         | <0.0001                | 0.00    | No Limit            |
|                                |                        | EG020A-F: Arsenic                    | 7440-38-2  | 0.001                                   | <del>_</del> | <0.001          | <0.001                 | 0.00    | No Limit            |
|                                |                        | EG020A-F: Chromium                   | 7440-47-3  | 0.001                                   |              | <0.001          | <0.001                 | 0.00    | No Limit            |
|                                |                        | EG020A-F: Copper                     | 7440-50-8  | 0.001                                   | mg/L         | 0.103           | 0.100                  | 2.75    | 0% - 20%            |
|                                |                        | EG020A-F: Lead                       | 7439-92-1  | 0.001                                   | mg/L         | <0.001          | <0.001                 | 0.00    | No Limit            |
|                                |                        | EG020A-F: Nickel                     | 7440-02-0  | 0.001                                   | mg/L         | <0.001          | <0.001                 | 0.00    | No Limit            |
|                                |                        | EG020A-F: Zinc                       | 7440-66-6  | 0.005                                   | mg/L         | 0.027           | 0.029                  | 6.58    | No Limit            |
|                                |                        | EG020A-F: Aluminium                  | 7429-90-5  | 0.01                                    | mg/L         | <0.01           | <0.01                  | 0.00    | No Limit            |
|                                |                        | EG020A-F: Iron                       | 7439-89-6  | 0.05                                    | mg/L         | <0.05           | <0.05                  | 0.00    | No Limit            |
| EP1707263-007                  | Anonymous              | EG020A-F: Cadmium                    | 7440-43-9  | 0.0001                                  | mg/L         | <0.0001         | <0.0001                | 0.00    | No Limit            |
|                                |                        | EG020A-F: Arsenic                    | 7440-38-2  | 0.001                                   | mg/L         | <0.001          | <0.001                 | 0.00    | No Limit            |
|                                |                        | EG020A-F: Chromium                   | 7440-47-3  | 0.001                                   | mg/L         | <0.001          | <0.001                 | 0.00    | No Limit            |
|                                |                        | EG020A-F: Copper                     | 7440-50-8  | 0.001                                   | mg/L         | <0.001          | <0.001                 | 0.00    | No Limit            |
|                                |                        | EG020A-F: Lead                       | 7439-92-1  | 0.001                                   | mg/L         | <0.001          | <0.001                 | 0.00    | No Limit            |
|                                |                        | EG020A-F: Nickel                     | 7440-02-0  | 0.001                                   | mg/L         | <0.001          | <0.001                 | 0.00    | No Limit            |
|                                |                        | EG020A-F: Zinc                       | 7440-66-6  | 0.005                                   | mg/L         | <0.005          | <0.005                 | 0.00    | No Limit            |
|                                |                        | EG020A-F: Aluminium                  | 7429-90-5  | 0.01                                    | mg/L         | <0.01           | <0.01                  | 0.00    | No Limit            |
|                                |                        | EG020A-F: Iron                       | 7439-89-6  | 0.05                                    | mg/L         | <0.05           | <0.05                  | 0.00    | No Limit            |
| G035F: Dissolved               | Mercury by FIMS (QC    | Lot: 997064)                         |            |                                         |              |                 |                        |         |                     |
| EP1707367-007                  | Anonymous              | EG035F: Mercury                      | 7439-97-6  | 0.0001                                  | mg/L         | <0.0001         | <0.0001                | 0.00    | No Limit            |
| EP1707263-007                  | Anonymous              | EG035F: Mercury                      | 7439-97-6  | 0.0001                                  | mg/L         | <0.0001         | <0.0001                | 0.00    | No Limit            |
| K055G: Ammonia                 | as N by Discrete Analy |                                      |            |                                         |              |                 |                        |         |                     |
| EP1707307-001                  | Anonymous              | EK055G: Ammonia as N                 | 7664-41-7  | 0.01                                    | mg/L         | 0.05            | 0.05                   | 0.00    | No Limit            |
|                                | N by Discrete Analyser |                                      |            |                                         | <i>3</i> . – | 1 2.22          | . 55                   |         | ,                   |
| EP1707303-001                  | Anonymous              | EK057G: Nitrite as N                 | 14797-65-0 | 0.01                                    | mg/L         | 0.54            | 0.54                   | 0.00    | 0% - 20%            |
| EP1707314-004                  | Anonymous              | EK057G: Nitrite as N                 | 14797-65-0 | 0.01                                    | mg/L         | <0.01           | <0.01                  | 0.00    | No Limit            |
|                                | •                      | y Discrete Analyser (QC Lot: 988775) | 11101 30 0 | V.V 1                                   | 9'-          | 0.01            | 3.01                   | 3.00    |                     |
| EP1707286-001                  | ` ` `                  |                                      |            | 0.01                                    | ma/l         | 0.02            | 0.02                   | 0.00    | No Limit            |
| EP1707266-001<br>EP1707307-001 | Anonymous Anonymous    | EK059G: Nitrite + Nitrate as N       |            | 0.01                                    | mg/L<br>mg/L | 0.02            | 0.02                   | 3.45    | 0% - 20%            |
| LI 1/0/30/-001                 | Anonymous              | EK059G: Nitrite + Nitrate as N       |            | 0.01                                    | mg/L         | 0.40            | 0.50                   | 5.45    | 0 /0 - 20 /0        |

Page : 4 of 13 Work Order : EP1707310

Client : GOLDER ASSOCIATES



| Sub-Matrix: WATER  Laboratory Duplicate (DUP) Report |                              |                                                |             |      |      |                 | Duplicate (DUP) Report |         |                    |
|------------------------------------------------------|------------------------------|------------------------------------------------|-------------|------|------|-----------------|------------------------|---------|--------------------|
| Laboratory sample ID                                 | Client sample ID             | Method: Compound                               | CAS Number  | LOR  | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (% |
| EK061G: Total Kjelda                                 | ahl Nitrogen By Discrete Ana | alyser (QC Lot: 996952) - continued            |             |      |      |                 |                        |         |                    |
| EP1707332-001                                        | Anonymous                    | EK061G: Total Kjeldahl Nitrogen as N           |             | 0.1  | mg/L | 8.0             | 9.0                    | 11.8    | 0% - 20%           |
| EP1707353-001                                        | Anonymous                    | EK061G: Total Kjeldahl Nitrogen as N           |             | 0.1  | mg/L | <0.1            | <0.1                   | 0.00    | No Limit           |
| K067G: Total Phos                                    | phorus as P by Discrete Ana  | alyser (QC Lot: 996951)                        |             |      |      |                 |                        |         |                    |
| EP1707332-001                                        | Anonymous                    | EK067G: Total Phosphorus as P                  |             | 0.01 | mg/L | 2.77            | 2.94                   | 6.13    | 0% - 20%           |
| EP1707353-001                                        | Anonymous                    | EK067G: Total Phosphorus as P                  |             | 0.01 | mg/L | <0.01           | 0.02                   | 72.2    | No Limit           |
| K071G: Reactive Pl                                   | hosphorus as P by discrete   | analyser (QC Lot: 988771)                      |             |      |      |                 |                        |         |                    |
| EP1707297-007                                        | Anonymous                    | EK071G: Reactive Phosphorus as P               | 14265-44-2  | 0.01 | mg/L | 0.03            | 0.03                   | 0.00    | No Limit           |
| EP1707314-004                                        | Anonymous                    | EK071G: Reactive Phosphorus as P               | 14265-44-2  | 0.01 | mg/L | 0.08            | 0.08                   | 0.00    | No Limit           |
| P005: Total Organic                                  | Carbon (TOC) (QC Lot: 99     | 9174)                                          |             |      |      |                 |                        |         |                    |
| EB1714415-003                                        | Anonymous                    | EP005: Total Organic Carbon                    |             | 1    | mg/L | 4040            | 3990                   | 1.12    | 0% - 20%           |
| P026SP: Chemical                                     | Oxygen Demand (Spectroph     | notometric) (QC Lot: 998649)                   |             |      |      |                 |                        |         |                    |
| EP1707310-001                                        | Q00186-01                    | EP026SP: Chemical Oxygen Demand                |             | 10   | mg/L | 574             | 574                    | 0.00    | 0% - 20%           |
| ES1717064-002                                        | Anonymous                    | EP026SP: Chemical Oxygen Demand                |             | 10   | mg/L | 3320            | 3320                   | 0.00    | 0% - 20%           |
| P030: Biochemical                                    | Oxygen Demand (BOD) (QC      | , , ,                                          |             |      |      |                 |                        |         |                    |
| EP1707328-002                                        | Anonymous                    | EP030: Biochemical Oxygen Demand               |             | 2    | mg/L | <2              | <2                     | 0.00    | No Limit           |
| EP1707332-005                                        | Anonymous                    | EP030: Biochemical Oxygen Demand               |             | 2    | mg/L | 19              | 17                     | 9.97    | No Limit           |
| P071 SG: Total Pet                                   | _                            | a gel cleanup (QC Lot: 990521)                 |             |      | - U  |                 |                        |         |                    |
| EP1707310-001                                        | Q00186-01                    | EP071SG: C15 - C28 Fraction                    |             | 100  | μg/L | <100            | <100                   | 0.00    | No Limit           |
|                                                      | 400.000.                     | EP071SG: C10 - C14 Fraction                    |             | 50   | μg/L | <50             | <50                    | 0.00    | No Limit           |
|                                                      |                              | EP071SG: C29 - C36 Fraction                    |             | 50   | µg/L | <50             | <50                    | 0.00    | No Limit           |
| P071 SG: Total Rec                                   | overable Hydrocarbons - NE   | EPM 2013 Fractions - Silica gel cleanup (QC Lo | ot: 990521) |      | 10   |                 |                        |         |                    |
| EP1707310-001                                        | Q00186-01                    | EP071SG: >C10 - C16 Fraction                   |             | 100  | μg/L | <100            | <100                   | 0.00    | No Limit           |
|                                                      |                              | EP071SG: >C16 - C34 Fraction                   |             | 100  | μg/L | <100            | <100                   | 0.00    | No Limit           |
|                                                      |                              | EP071SG: >C34 - C40 Fraction                   |             | 100  | μg/L | <100            | <100                   | 0.00    | No Limit           |
| P075(SIM)A: Pheno                                    | olic Compounds (QC Lot: 99   |                                                |             |      | 10   |                 |                        |         |                    |
| EP1707310-001                                        | Q00186-01                    | EP075(SIM): Phenol                             | 108-95-2    | 1    | μg/L | <1.0            | <1.0                   | 0.00    | No Limit           |
|                                                      |                              | EP075(SIM): 2-Chlorophenol                     | 95-57-8     | 1    | μg/L | <1.0            | <1.0                   | 0.00    | No Limit           |
|                                                      |                              | EP075(SIM): 2-Methylphenol                     | 95-48-7     | 1    | μg/L | <1.0            | <1.0                   | 0.00    | No Limit           |
|                                                      |                              | EP075(SIM): 2-Nitrophenol                      | 88-75-5     | 1    | μg/L | <1.0            | <1.0                   | 0.00    | No Limit           |
|                                                      |                              | EP075(SIM): 2.4-Dimethylphenol                 | 105-67-9    | 1    | μg/L | <1.0            | <1.0                   | 0.00    | No Limit           |
|                                                      |                              | EP075(SIM): 2.4-Dichlorophenol                 | 120-83-2    | 1    | μg/L | <1.0            | <1.0                   | 0.00    | No Limit           |
|                                                      |                              | EP075(SIM): 2.6-Dichlorophenol                 | 87-65-0     | 1    | μg/L | <1.0            | <1.0                   | 0.00    | No Limit           |
|                                                      |                              | EP075(SIM): 4-Chloro-3-methylphenol            | 59-50-7     | 1    | μg/L | <1.0            | <1.0                   | 0.00    | No Limit           |
|                                                      |                              | EP075(SIM): 2.4.6-Trichlorophenol              | 88-06-2     | 1    | μg/L | <1.0            | <1.0                   | 0.00    | No Limit           |
|                                                      |                              | EP075(SIM): 2.4.5-Trichlorophenol              | 95-95-4     | 1    | μg/L | <1.0            | <1.0                   | 0.00    | No Limit           |
|                                                      |                              | EP075(SIM): 3- & 4-Methylphenol                | 1319-77-3   | 2    | μg/L | <2.0            | <2.0                   | 0.00    | No Limit           |
|                                                      |                              | EP075(SIM): Pentachlorophenol                  | 87-86-5     | 2    | μg/L | <2.0            | <2.0                   | 0.00    | No Limit           |

Page : 5 of 13 Work Order : EP1707310

Client : GOLDER ASSOCIATES



| Sub-Matrix: WATER    |                        |                                            |            |     |              | Laboratory      | Duplicate (DUP) Report |         |                     |
|----------------------|------------------------|--------------------------------------------|------------|-----|--------------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID       | Method: Compound                           | CAS Number | LOR | Unit         | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| P075(SIM)B: Polyr    | nuclear Aromatic Hydro | ocarbons (QC Lot: 990519) - continued      |            |     |              |                 |                        |         |                     |
| EP1707310-001        | Q00186-01              | EP075(SIM): Benzo(a)pyrene                 | 50-32-8    | 0.5 | μg/L         | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Sum of polycyclic aromatic     |            | 0.5 | μg/L         | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                        | hydrocarbons                               |            |     |              |                 |                        |         |                     |
|                      |                        | EP075(SIM): Naphthalene                    | 91-20-3    | 1   | μg/L         | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Acenaphthylene                 | 208-96-8   | 1   | μg/L         | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Acenaphthene                   | 83-32-9    | 1   | μg/L         | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Fluorene                       | 86-73-7    | 1   | μg/L         | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Phenanthrene                   | 85-01-8    | 1   | μg/L         | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Anthracene                     | 120-12-7   | 1   | μg/L         | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Fluoranthene                   | 206-44-0   | 1   | μg/L         | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Pyrene                         | 129-00-0   | 1   | μg/L         | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Benz(a)anthracene              | 56-55-3    | 1   | μg/L         | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Chrysene                       | 218-01-9   | 1   | μg/L         | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Benzo(b+j)fluoranthene         | 205-99-2   | 1   | μg/L         | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        |                                            | 205-82-3   |     |              |                 |                        |         |                     |
|                      |                        | EP075(SIM): Benzo(k)fluoranthene           | 207-08-9   | 1   | μg/L         | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Indeno(1.2.3.cd)pyrene         | 193-39-5   | 1   | μg/L         | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Dibenz(a.h)anthracene          | 53-70-3    | 1   | μg/L         | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Benzo(g.h.i)perylene           | 191-24-2   | 1   | μg/L         | <1.0            | <1.0                   | 0.00    | No Limit            |
| EP080/071: Total Pε  | etroleum Hydrocarbons  | s (QC Lot: 990520)                         |            |     |              |                 |                        |         |                     |
| EP1707310-001        | Q00186-01              | EP071: C15 - C28 Fraction                  |            | 100 | μg/L         | <100            | <100                   | 0.00    | No Limit            |
|                      |                        | EP071: C10 - C14 Fraction                  |            | 50  | μg/L         | <50             | <50                    | 0.00    | No Limit            |
|                      |                        | EP071: C29 - C36 Fraction                  |            | 50  | μg/L         | <50             | <50                    | 0.00    | No Limit            |
| EP080/071: Total Pe  | etroleum Hydrocarbons  | (QC Lot: 990557)                           |            |     |              |                 |                        |         |                     |
| EP1707322-001        | Anonymous              | EP080: C6 - C9 Fraction                    |            | 20  | μg/L         | <0.02 mg/L      | <20                    | 0.00    | No Limit            |
| EP1707325-007        | Anonymous              | EP080: C6 - C9 Fraction                    |            | 20  | μg/L         | <20             | <20                    | 0.00    | No Limit            |
|                      | -                      | ons - NEPM 2013 Fractions (QC Lot: 990520) |            |     | 13           |                 |                        |         |                     |
| EP1707310-001        | Q00186-01              |                                            |            | 100 | ug/l         | <100            | <100                   | 0.00    | No Limit            |
| LF 1707310-001       | Q00100-01              | EP071: >C10 - C16 Fraction                 |            | 100 | μg/L<br>μg/L | <100            | <100                   | 0.00    | No Limit            |
|                      |                        | EP071: >C16 - C34 Fraction                 |            | 100 | μg/L         | <100            | <100                   | 0.00    | No Limit            |
|                      |                        | EP071: >C34 - C40 Fraction                 |            | 100 | μу/∟         | 100             | <100                   | 0.00    | NO LITTIL           |
|                      |                        | ons - NEPM 2013 Fractions (QC Lot: 990557) | 00.515     |     | ,,           | 2.00 "          |                        | 0.00    | N. 1                |
| EP1707322-001        | Anonymous              | EP080: C6 - C10 Fraction                   | C6_C10     | 20  | μg/L         | <0.02 mg/L      | <20                    | 0.00    | No Limit            |
| EP1707325-007        | Anonymous              | EP080: C6 - C10 Fraction                   | C6_C10     | 20  | μg/L         | <20             | <20                    | 0.00    | No Limit            |
| EP080: BTEXN (QC     | Lot: 990557)           |                                            |            |     |              |                 |                        |         |                     |
| EP1707322-001        | Anonymous              | EP080: Benzene                             | 71-43-2    | 1   | μg/L         | <0.001 mg/L     | <1                     | 0.00    | No Limit            |
|                      |                        | EP080: Toluene                             | 108-88-3   | 2   | μg/L         | <0.002 mg/L     | <2                     | 0.00    | No Limit            |
|                      |                        | EP080: Ethylbenzene                        | 100-41-4   | 2   | μg/L         | <0.002 mg/L     | <2                     | 0.00    | No Limit            |
|                      |                        | EP080: meta- & para-Xylene                 | 108-38-3   | 2   | μg/L         | <0.002 mg/L     | <2                     | 0.00    | No Limit            |
|                      |                        |                                            | 106-42-3   |     |              |                 |                        |         |                     |

Page : 6 of 13 Work Order : EP1707310

Client : GOLDER ASSOCIATES



| Sub-Matrix: WATER    |                           |                                                |             | Laboratory Duplicate (DUP) Report |      |                 |                  |         |                     |
|----------------------|---------------------------|------------------------------------------------|-------------|-----------------------------------|------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID          | Method: Compound                               | CAS Number  | LOR                               | Unit | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EP080: BTEXN (QC     | C Lot: 990557) - continue | d                                              |             |                                   |      |                 |                  |         |                     |
| EP1707322-001        | Anonymous                 | EP080: ortho-Xylene                            | 95-47-6     | 2                                 | μg/L | <0.002 mg/L     | <2               | 0.00    | No Limit            |
|                      |                           | EP080: Naphthalene                             | 91-20-3     | 5                                 | μg/L | <0.005 mg/L     | <5               | 0.00    | No Limit            |
| EP1707325-007        | Anonymous                 | EP080: Benzene                                 | 71-43-2     | 1                                 | μg/L | <1              | <1               | 0.00    | No Limit            |
|                      |                           | EP080: Toluene                                 | 108-88-3    | 2                                 | μg/L | <2              | <2               | 0.00    | No Limit            |
|                      |                           | EP080: Ethylbenzene                            | 100-41-4    | 2                                 | μg/L | <2              | <2               | 0.00    | No Limit            |
|                      |                           | EP080: meta- & para-Xylene                     | 108-38-3    | 2                                 | μg/L | <2              | <2               | 0.00    | No Limit            |
|                      |                           |                                                | 106-42-3    |                                   |      |                 |                  |         |                     |
|                      |                           | EP080: ortho-Xylene                            | 95-47-6     | 2                                 | μg/L | <2              | <2               | 0.00    | No Limit            |
|                      |                           | EP080: Naphthalene                             | 91-20-3     | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |
| EP231A: Perfluoroa   | alkyl Sulfonic Acids (QC  | Lot: 996761)                                   |             |                                   |      |                 |                  |         |                     |
| EP1707263-007        | Anonymous                 | EP231X: Perfluorooctane sulfonic acid (PFOS)   | 1763-23-1   | 0.01                              | μg/L | <0.01           | <0.01            | 0.00    | No Limit            |
| l                    |                           | EP231X: Perfluorobutane sulfonic acid (PFBS)   | 375-73-5    | 0.02                              | μg/L | <0.02           | <0.02            | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorohexane sulfonic acid (PFHxS)  | 355-46-4    | 0.02                              | μg/L | <0.02           | <0.02            | 0.00    | No Limit            |
| ES1717169-002        | Anonymous                 | EP231X: Perfluorooctane sulfonic acid (PFOS)   | 1763-23-1   | 0.01                              | μg/L | <0.01           | <0.01            | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorobutane sulfonic acid (PFBS)   | 375-73-5    | 0.02                              | μg/L | <0.02           | <0.02            | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorohexane sulfonic acid (PFHxS)  | 355-46-4    | 0.02                              | μg/L | <0.02           | <0.02            | 0.00    | No Limit            |
| EP231B: Perfluoro    | alkyl Carboxylic Acids (( | QC Lot: 996761)                                |             |                                   |      |                 |                  |         |                     |
| EP1707263-007        | Anonymous                 | EP231X: Perfluorooctanoic acid (PFOA)          | 335-67-1    | 0.01                              | μg/L | <0.01           | <0.01            | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluoropentanoic acid (PFPeA)        | 2706-90-3   | 0.02                              | μg/L | <0.02           | <0.02            | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorohexanoic acid (PFHxA)         | 307-24-4    | 0.02                              | μg/L | <0.02           | <0.02            | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluoroheptanoic acid (PFHpA)        | 375-85-9    | 0.02                              | μg/L | <0.02           | <0.02            | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorobutanoic acid (PFBA)          | 375-22-4    | 0.1                               | μg/L | <0.1            | <0.1             | 0.00    | No Limit            |
| ES1717169-002        | Anonymous                 | EP231X: Perfluorooctanoic acid (PFOA)          | 335-67-1    | 0.01                              | μg/L | <0.01           | <0.01            | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluoropentanoic acid (PFPeA)        | 2706-90-3   | 0.02                              | μg/L | <0.02           | <0.02            | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorohexanoic acid (PFHxA)         | 307-24-4    | 0.02                              | μg/L | <0.02           | <0.02            | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluoroheptanoic acid (PFHpA)        | 375-85-9    | 0.02                              | μg/L | <0.02           | <0.02            | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorobutanoic acid (PFBA)          | 375-22-4    | 0.1                               | μg/L | <0.1            | <0.1             | 0.00    | No Limit            |
| EP231D: (n:2) Fluo   | rotelomer Sulfonic Acids  | (QC Lot: 996761)                               |             |                                   |      |                 |                  |         |                     |
| EP1707263-007        | Anonymous                 | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2   | 757124-72-4 | 0.05                              | μg/L | <0.05           | <0.05            | 0.00    | No Limit            |
|                      |                           | FTS)                                           |             |                                   |      |                 |                  |         |                     |
|                      |                           | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2   | 27619-97-2  | 0.05                              | μg/L | <0.05           | <0.05            | 0.00    | No Limit            |
|                      |                           | FTS)                                           |             |                                   |      |                 |                  |         |                     |
|                      |                           | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2   | 39108-34-4  | 0.05                              | μg/L | <0.05           | <0.05            | 0.00    | No Limit            |
|                      |                           | FTS)                                           |             |                                   |      |                 |                  |         |                     |
|                      |                           | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 | 120226-60-0 | 0.05                              | μg/L | <0.05           | <0.05            | 0.00    | No Limit            |
|                      |                           | FTS)                                           |             |                                   |      |                 |                  |         |                     |
| ES1717169-002        | Anonymous                 | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2   | 757124-72-4 | 0.05                              | μg/L | <0.05           | <0.05            | 0.00    | No Limit            |
|                      |                           | FTS)                                           |             |                                   |      |                 |                  |         |                     |
|                      |                           | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2   | 27619-97-2  | 0.05                              | μg/L | <0.05           | <0.05            | 0.00    | No Limit            |
|                      |                           | FTS)                                           |             |                                   |      |                 |                  |         |                     |

Page : 7 of 13 Work Order : EP1707310

Client : GOLDER ASSOCIATES



| Sub-Matrix: WATER    |                                                         |                                                   |             |      |      | Laboratory D    | Duplicate (DUP) Report | •       |                     |  |  |  |  |  |  |
|----------------------|---------------------------------------------------------|---------------------------------------------------|-------------|------|------|-----------------|------------------------|---------|---------------------|--|--|--|--|--|--|
| Laboratory sample ID | boratory sample ID Client sample ID Method: Compound CA |                                                   | CAS Number  | LOR  | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |  |  |  |  |  |  |
| EP231D: (n:2) Fluoro | otelomer Sulfonic Acids (QC                             | C Lot: 996761) - continued                        |             |      |      |                 |                        |         |                     |  |  |  |  |  |  |
| ES1717169-002        | Anonymous                                               | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4  | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |  |  |  |  |  |  |
|                      | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)     |                                                   | 120226-60-0 | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |  |  |  |  |  |  |

Page : 8 of 13 Work Order : EP1707310

Client : GOLDER ASSOCIATES

Project : 1779954



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                       |             |        |         | Method Blank (MB) |               | Laboratory Control Spike (LCS |          |            |
|---------------------------------------------------------|-------------|--------|---------|-------------------|---------------|-------------------------------|----------|------------|
|                                                         |             |        |         | Report            | Spike         | Spike Recovery (%)            | Recovery | Limits (%) |
| Method: Compound                                        | CAS Number  | LOR    | Unit    | Result            | Concentration | LCS                           | Low      | High       |
| EA005P: pH by PC Titrator (QCLot: 989778)               |             |        |         |                   |               |                               |          |            |
| EA005-P: pH Value                                       |             |        | pH Unit |                   | 4 pH Unit     | 99.8                          | 99       | 102        |
|                                                         |             |        |         |                   | 7 pH Unit     | 100                           | 99       | 102        |
| EA010P: Conductivity by PC Titrator (QCLot: 989774)     |             |        |         |                   |               |                               |          |            |
| EA010-P: Electrical Conductivity @ 25°C                 |             | 1      | μS/cm   | <1                | 24800 μS/cm   | 99.6                          | 95       | 105        |
| EA015: Total Dissolved Solids dried at 180 ± 5 °C (QCLo | ot: 999377) |        |         |                   |               |                               |          |            |
| EA015H: Total Dissolved Solids @180°C                   |             | 10     | mg/L    | <10               | 2000 mg/L     | 99.8                          | 83       | 111        |
|                                                         |             |        |         | <10               | 1000 mg/L     | 88.2                          | 70       | 130        |
| ED037P: Alkalinity by PC Titrator (QCLot: 989779)       |             |        |         |                   |               |                               |          |            |
| ED037-P: Hydroxide Alkalinity as CaCO3                  | DMO-210-00  | 1      | mg/L    | <1                |               |                               |          |            |
| 2500 Triyaromao rimaining as saces                      | 1           |        |         |                   |               |                               |          |            |
| ED037-P: Carbonate Alkalinity as CaCO3                  | 3812-32-6   | 1      | mg/L    | <1                |               |                               |          |            |
| ED037-P: Bicarbonate Alkalinity as CaCO3                | 71-52-3     | 1      | mg/L    | <1                |               |                               |          |            |
| ED037-P: Total Alkalinity as CaCO3                      |             | 1      | mg/L    | <1                | 20 mg/L       | 99.6                          | 76       | 126        |
|                                                         |             |        |         | <1                | 200 mg/L      | 93.9                          | 90       | 106        |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLo   | ot: 988774) |        |         |                   |               |                               |          |            |
| ED041G: Sulfate as SO4 - Turbidimetric                  | 14808-79-8  | 1      | mg/L    | <1                | 25 mg/L       | 100                           | 89       | 113        |
|                                                         |             |        |         | <1                | 100 mg/L      | 96.4                          | 79       | 121        |
| ED045G: Chloride by Discrete Analyser (QCLot: 988770    | ))          |        |         |                   |               |                               |          |            |
| ED045G: Chloride                                        | 16887-00-6  | 1      | mg/L    | <1                | 10 mg/L       | 94.3                          | 84       | 120        |
|                                                         |             |        |         | <1                | 1000 mg/L     | 104                           | 84       | 110        |
| ED093F: Dissolved Major Cations (QCLot: 997062)         |             |        |         |                   |               | '                             |          |            |
| ED093F: Calcium                                         | 7440-70-2   | 1      | mg/L    | <1                | 50 mg/L       | 98.7                          | 91       | 109        |
| ED093F: Magnesium                                       | 7439-95-4   | 1      | mg/L    | <1                | 50 mg/L       | 101                           | 90       | 108        |
| ED093F: Sodium                                          | 7440-23-5   | 1      | mg/L    | <1                | 50 mg/L       | 105                           | 87       | 111        |
| ED093F: Potassium                                       | 7440-09-7   | 1      | mg/L    | <1                | 50 mg/L       | 103                           | 90       | 110        |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 997063)      |             |        |         |                   |               |                               |          |            |
| EG020A-F: Aluminium                                     | 7429-90-5   | 0.01   | mg/L    | <0.01             | 0.5 mg/L      | 93.1                          | 84       | 116        |
| EG020A-F: Arsenic                                       | 7440-38-2   | 0.001  | mg/L    | <0.001            | 0.1 mg/L      | 99.6                          | 84       | 108        |
| EG020A-F: Cadmium                                       | 7440-43-9   | 0.0001 | mg/L    | <0.0001           | 0.1 mg/L      | 96.5                          | 86       | 108        |
| EG020A-F: Chromium                                      | 7440-47-3   | 0.001  | mg/L    | <0.001            | 0.1 mg/L      | 93.7                          | 85       | 109        |
| EG020A-F: Copper                                        | 7440-50-8   | 0.001  | mg/L    | <0.001            | 0.1 mg/L      | 92.2                          | 84       | 110        |
| EG020A-F: Lead                                          | 7439-92-1   | 0.001  | mg/L    | <0.001            | 0.1 mg/L      | 95.3                          | 85       | 107        |
| EG020A-F: Nickel                                        | 7440-02-0   | 0.001  | mg/L    | <0.001            | 0.1 mg/L      | 94.0                          | 84       | 112        |
| EG020A-F: Zinc                                          | 7440-66-6   | 0.005  | mg/L    | <0.005            | 0.1 mg/L      | 93.5                          | 89       | 115        |

Page : 9 of 13 Work Order : EP1707310

Client : GOLDER ASSOCIATES



| Sub-Matrix: WATER                                                      |                    |                | Method Blank (MB) |                                       | Laboratory Control Spike (LC: | S) Report  |            |
|------------------------------------------------------------------------|--------------------|----------------|-------------------|---------------------------------------|-------------------------------|------------|------------|
|                                                                        |                    |                | Report            | Spike                                 | Spike Recovery (%)            | Recovery I | Limits (%) |
| Method: Compound CAS Number                                            | LOR                | Unit           | Result            | Concentration                         | LCS                           | Low        | High       |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 997063) - continued         |                    |                |                   |                                       |                               |            |            |
| EG020A-F: Iron 7439-89-6                                               | 0.05               | mg/L           | <0.05             | 0.5 mg/L                              | 96.7                          | 84         | 112        |
| EG035F: Dissolved Mercury by FIMS (QCLot: 997064)                      |                    |                |                   |                                       |                               |            |            |
| EG035F: Mercury 7439-97-6                                              | 0.0001             | mg/L           | <0.0001           | 0.01 mg/L                             | 114                           | 92         | 116        |
| EK055G: Ammonia as N by Discrete Analyser (QCLot: 988776)              |                    |                |                   |                                       |                               |            |            |
| EK055G: Ammonia as N 7664-41-7                                         | 0.01               | mg/L           | <0.01             | 1 mg/L                                | 108                           | 87         | 115        |
| EK057G: Nitrite as N by Discrete Analyser (QCLot: 988773)              |                    |                |                   |                                       |                               |            |            |
| EK057G: Nitrite as N 14797-65-0                                        | 0.01               | mg/L           | <0.01             | 0.5 mg/L                              | 100                           | 86         | 112        |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 9 | 988775)            |                |                   |                                       |                               |            |            |
| EK059G: Nitrite + Nitrate as N                                         | 0.01               | mg/L           | <0.01             | 0.5 mg/L                              | 103                           | 92         | 112        |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 996952)   |                    |                |                   | _                                     |                               |            |            |
| EK061G: Total Kjeldahl Nitrogen as N                                   | 0.1                | mg/L           | <0.1              | 10 mg/L                               | 83.8                          | 82         | 110        |
| EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 996951)     |                    |                |                   | <u> </u>                              |                               |            |            |
| EK067G: Total Phosphorus as P                                          | 0.01               | mg/L           | <0.01             | 4.42 mg/L                             | 87.3                          | 70         | 130        |
| EK071G: Reactive Phosphorus as P by discrete analyser (QCLot: 98877    | (1)                | 3              |                   | J                                     |                               | -          |            |
| EK071G: Reactive Phosphorus as P 14265-44-2                            | 0.01               | mg/L           | <0.01             | 0.5 mg/L                              | 106                           | 87         | 115        |
| EP005: Total Organic Carbon (TOC) (QCLot: 999174)                      | 0.01               | 9              |                   | 0.0 mg/2                              | 100                           | Ų.         |            |
| EP005: Total Organic Carbon (TOC) (QCLot: 999174)                      | 1                  | mg/L           | <1                | 10 mg/L                               | 92.0                          | 79         | 113        |
| Eroos. Total Organic Carbon                                            | '                  | mg/L           | <1                | 100 mg/L                              | 95.2                          | 79         | 113        |
| EP026SP: Chemical Oxygen Demand (Spectrophotometric) (QCLot: 998       | 2649)              |                |                   | J                                     |                               | -          | -          |
| EP026SP: Chemical Oxygen Demand (Spectrophotometric) (QCL0t. 998       | 10                 | mg/L           | <10               | 50 mg/L                               | 102                           | 82         | 112        |
| Li 02001 : Oliemicai Oxygen Demand                                     |                    | 9.=            | <10               | 500 mg/L                              | 100                           | 83         | 113        |
| EP030: Biochemical Oxygen Demand (BOD) (QCLot: 993352)                 |                    |                |                   |                                       |                               |            |            |
| EP030: Biochemical Oxygen Demand                                       | 2                  | mg/L           | <2                | 198 mg/L                              | 103                           | 78         | 117        |
| EP071 SG: Total Petroleum Hydrocarbons - Silica gel cleanup (QCLot: 9  |                    |                |                   | , , , , , , , , , , , , , , , , , , , |                               |            |            |
| EP071SG: C10 - C14 Fraction                                            | 50                 | μg/L           | <50               | 3486 μg/L                             | 97.8                          | 34         | 141        |
| EP071SG: C15 - C28 Fraction                                            | 100                | μg/L           | <100              | 9824 μg/L                             | 99.7                          | 38         | 127        |
| EP071SG: C29 - C36 Fraction                                            | 50                 | μg/L           | <50               | 1476 μg/L                             | 88.8                          | 40         | 129        |
| EP071 SG: Total Recoverable Hydrocarbons - NEPM 2013 Fractions - Sil   | ica gel cleanun (0 | CL of: 990521) |                   |                                       |                               |            |            |
| EP071SG: >C10 - C16 Fraction                                           | 100                | μg/L           | <100              | 6131 µg/L                             | 98.5                          | 36         | 129        |
| EP071SG: >C16 - C34 Fraction                                           | 100                | μg/L           | <100              | 8365 μg/L                             | 97.3                          | 41         | 129        |
| EP071SG: >C34 - C40 Fraction                                           | 100                | μg/L           | <100              | 470 μg/L                              | 86.7                          | 33         | 136        |
| EP075(SIM)A: Phenolic Compounds (QCLot: 990519)                        |                    |                |                   |                                       |                               |            |            |
| EP075(SIM): Phenol 108-95-2                                            | 1                  | μg/L           | <1.0              | 10 μg/L                               | 15.6                          | 9          | 46         |
| EP075(SIM): 2-Chlorophenol 95-57-8                                     | 1                  | μg/L           | <1.0              | 10 μg/L                               | 37.2                          | 34         | 97         |
| EP075(SIM): 2-Methylphenol 95-48-7                                     | 1                  | μg/L           | <1.0              | 10 μg/L                               | 33.3                          | 25         | 93         |
| EP075(SIM): 3- & 4-Methylphenol 1319-77-3                              | 2                  | μg/L           | <2.0              | 20 μg/L                               | 27.9                          | 22         | 83         |
| EP075(SIM): 2-Nitrophenol 88-75-5                                      | 1                  | μg/L           | <1.0              | 10 μg/L                               | 49.8                          | 34         | 104        |

Page : 10 of 13 Work Order : EP1707310

Client : GOLDER ASSOCIATES



| Sub-Matrix: WATER                                   |                      |             |      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |  |
|-----------------------------------------------------|----------------------|-------------|------|-------------------|---------------------------------------|--------------------|----------|------------|--|--|
|                                                     |                      |             |      | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |  |
| Method: Compound                                    | CAS Number           | LOR         | Unit | Result            | Concentration                         | LCS                | Low      | High       |  |  |
| EP075(SIM)A: Phenolic Compounds (QCLot: 990519) -   | continued            |             |      |                   |                                       |                    |          |            |  |  |
| EP075(SIM): 2.4-Dimethylphenol                      | 105-67-9             | 1           | μg/L | <1.0              | 10 μg/L                               | 38.0               | 34       | 102        |  |  |
| EP075(SIM): 2.4-Dichlorophenol                      | 120-83-2             | 1           | μg/L | <1.0              | 10 μg/L                               | 50.5               | 34       | 104        |  |  |
| EP075(SIM): 2.6-Dichlorophenol                      | 87-65-0              | 1           | μg/L | <1.0              | 10 μg/L                               | 43.1               | 38       | 102        |  |  |
| EP075(SIM): 4-Chloro-3-methylphenol                 | 59-50-7              | 1           | μg/L | <1.0              | 10 μg/L                               | 35.8               | 30       | 106        |  |  |
| EP075(SIM): 2.4.6-Trichlorophenol                   | 88-06-2              | 1           | μg/L | <1.0              | 10 μg/L                               | 39.0               | 32       | 109        |  |  |
| EP075(SIM): 2.4.5-Trichlorophenol                   | 95-95-4              | 1           | μg/L | <1.0              | 10 μg/L                               | 40.4               | 34       | 110        |  |  |
| EP075(SIM): Pentachlorophenol                       | 87-86-5              | 2           | μg/L | <2.0              | 10 μg/L                               | 85.3               | 14       | 104        |  |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (Q0  | CLot: 990519)        |             |      |                   |                                       |                    |          |            |  |  |
| EP075(SIM): Naphthalene                             | 91-20-3              | 1           | μg/L | <1.0              | 10 μg/L                               | 78.2               | 42       | 99         |  |  |
| EP075(SIM): Acenaphthylene                          | 208-96-8             | 1           | μg/L | <1.0              | 10 μg/L                               | 70.0               | 36       | 113        |  |  |
| EP075(SIM): Acenaphthene                            | 83-32-9              | 1           | μg/L | <1.0              | 10 μg/L                               | 73.4               | 36       | 102        |  |  |
| EP075(SIM): Fluorene                                | 86-73-7              | 1           | μg/L | <1.0              | 10 μg/L                               | 43.9               | 34       | 113        |  |  |
| EP075(SIM): Phenanthrene                            | 85-01-8              | 1           | μg/L | <1.0              | 10 μg/L                               | 77.9               | 37       | 115        |  |  |
| EP075(SIM): Anthracene                              | 120-12-7             | 1           | μg/L | <1.0              | 10 μg/L                               | 100                | 46       | 109        |  |  |
| EP075(SIM): Fluoranthene                            | 206-44-0             | 1           | μg/L | <1.0              | 10 μg/L                               | 113                | 40       | 124        |  |  |
| EP075(SIM): Pyrene                                  | 129-00-0             | 1           | μg/L | <1.0              | 10 μg/L                               | 106                | 40       | 123        |  |  |
| EP075(SIM): Benz(a)anthracene                       | 56-55-3              | 1           | μg/L | <1.0              | 10 μg/L                               | 61.8               | 40       | 126        |  |  |
| EP075(SIM): Chrysene                                | 218-01-9             | 1           | μg/L | <1.0              | 10 μg/L                               | 119                | 46       | 121        |  |  |
| EP075(SIM): Benzo(b+j)fluoranthene                  | 205-99-2<br>205-82-3 | 1           | μg/L | <1.0              | 10 μg/L                               | 98.2               | 43       | 123        |  |  |
| EP075(SIM): Benzo(k)fluoranthene                    | 207-08-9             | 1           | μg/L | <1.0              | 10 μg/L                               | 108                | 47       | 121        |  |  |
| EP075(SIM): Benzo(a)pyrene                          | 50-32-8              | 0.5         | μg/L | <0.5              | 10 μg/L                               | 103                | 45       | 123        |  |  |
| EP075(SIM): Indeno(1.2.3.cd)pyrene                  | 193-39-5             | 1           | μg/L | <1.0              | 10 μg/L                               | 75.8               | 39       | 120        |  |  |
| EP075(SIM): Dibenz(a.h)anthracene                   | 53-70-3              | 1           | μg/L | <1.0              | 10 μg/L                               | 70.1               | 39       | 119        |  |  |
| EP075(SIM): Benzo(g.h.i)perylene                    | 191-24-2             | 1           | μg/L | <1.0              | 10 μg/L                               | 97.1               | 40       | 123        |  |  |
| EP075(SIM): Sum of polycyclic aromatic hydrocarbons |                      | 0.5         | μg/L | <0.5              |                                       |                    |          |            |  |  |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 990 | )520)                |             |      |                   |                                       |                    |          |            |  |  |
| EP071: C10 - C14 Fraction                           |                      | 50          | μg/L | <50               | 400 μg/L                              | 59.2               | 35       | 95         |  |  |
| EP071: C15 - C28 Fraction                           |                      | 100         | μg/L | <100              | 400 μg/L                              | 89.4               | 34       | 111        |  |  |
| EP071: C29 - C36 Fraction                           |                      | 50          | μg/L | <50               | 400 μg/L                              | 80.5               | 34       | 105        |  |  |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 990 | )557)                |             |      |                   |                                       |                    |          |            |  |  |
| EP080: C6 - C9 Fraction                             |                      | 20          | μg/L | <20               | 320 μg/L                              | 108                | 74       | 113        |  |  |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 20 | 013 Fractions (QCLo  | ot: 990520) |      |                   |                                       |                    |          |            |  |  |
| EP071: >C10 - C16 Fraction                          |                      | 100         | μg/L | <100              | 400 μg/L                              | 63.3               | 37       | 99         |  |  |
| EP071: >C16 - C34 Fraction                          |                      | 100         | μg/L | <100              | 600 μg/L                              | 91.3               | 35       | 108        |  |  |
| EP071: >C34 - C40 Fraction                          |                      | 100         | μg/L | <100              | 200 μg/L                              | 103                | 11       | 117        |  |  |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 20 | 013 Fractions (QCLo  | ot: 990557) |      |                   |                                       |                    |          |            |  |  |
| EP080: C6 - C10 Fraction                            | C6_C10               | 20          | μg/L | <20               | 370 μg/L                              | 112                | 74       | 115        |  |  |

Page : 11 of 13 Work Order : EP1707310

Client : GOLDER ASSOCIATES

Project : 1779954



| Sub-Matrix: WATER                                   |                      |      |      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |  |
|-----------------------------------------------------|----------------------|------|------|-------------------|---------------------------------------|--------------------|----------|------------|--|--|
|                                                     |                      |      |      | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |  |
| Method: Compound                                    | CAS Number           | LOR  | Unit | Result            | Concentration                         | LCS                | Low      | High       |  |  |
| EP080: BTEXN (QCLot: 990557)                        |                      |      |      |                   |                                       |                    |          |            |  |  |
| EP080: Benzene                                      | 71-43-2              | 1    | μg/L | <1                | 20 μg/L                               | 111                | 84       | 114        |  |  |
| EP080: Toluene                                      | 108-88-3             | 2    | μg/L | <2                | 20 μg/L                               | 107                | 81       | 115        |  |  |
| EP080: Ethylbenzene                                 | 100-41-4             | 2    | μg/L | <2                | 20 μg/L                               | 108                | 84       | 113        |  |  |
| EP080: meta- & para-Xylene                          | 108-38-3<br>106-42-3 | 2    | μg/L | <2                | 40 μg/L                               | 112                | 84       | 114        |  |  |
| EP080: ortho-Xylene                                 | 95-47-6              | 2    | μg/L | <2                | 20 μg/L                               | 109                | 87       | 111        |  |  |
| EP080: Naphthalene                                  | 91-20-3              | 5    | μg/L | <5                | 20 μg/L                               | 110                | 77       | 118        |  |  |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 9967  | 61)                  |      |      |                   |                                       |                    |          |            |  |  |
| EP231X: Perfluorobutane sulfonic acid (PFBS)        | 375-73-5             | 0.02 | μg/L | <0.02             | 0.5 μg/L                              | 91.0               | 70       | 130        |  |  |
| EP231X: Perfluorohexane sulfonic acid (PFHxS)       | 355-46-4             | 0.02 | μg/L | <0.02             | 0.5 μg/L                              | 82.4               | 70       | 130        |  |  |
| EP231X: Perfluorooctane sulfonic acid (PFOS)        | 1763-23-1            | 0.01 | μg/L | <0.01             | 0.5 μg/L                              | 116                | 70       | 130        |  |  |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 99  | 96761)               |      |      |                   |                                       |                    |          |            |  |  |
| EP231X: Perfluorobutanoic acid (PFBA)               | 375-22-4             | 0.1  | μg/L | <0.1              | 2.5 μg/L                              | 86.6               | 70       | 130        |  |  |
| EP231X: Perfluoropentanoic acid (PFPeA)             | 2706-90-3            | 0.02 | μg/L | <0.02             | 0.5 μg/L                              | 84.0               | 70       | 130        |  |  |
| EP231X: Perfluorohexanoic acid (PFHxA)              | 307-24-4             | 0.02 | μg/L | <0.02             | 0.5 μg/L                              | 80.0               | 70       | 130        |  |  |
| EP231X: Perfluoroheptanoic acid (PFHpA)             | 375-85-9             | 0.02 | μg/L | <0.02             | 0.5 μg/L                              | 119                | 70       | 130        |  |  |
| EP231X: Perfluorooctanoic acid (PFOA)               | 335-67-1             | 0.01 | μg/L | <0.01             | 0.5 μg/L                              | 110                | 70       | 130        |  |  |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot   | : 996761)            |      |      |                   |                                       |                    |          |            |  |  |
| EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4          | 0.05 | μg/L | <0.05             | 0.5 μg/L                              | 104                | 70       | 130        |  |  |
| EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2           | 0.05 | μg/L | <0.05             | 0.5 μg/L                              | 103                | 70       | 130        |  |  |
| EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4           | 0.05 | μg/L | <0.05             | 0.5 μg/L                              | 122                | 70       | 130        |  |  |
| EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0          | 0.05 | μg/L | <0.05             | 0.5 μg/L                              | 83.4               | 70       | 130        |  |  |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                                               |                                           |           | Ма            | trix Spike (MS) Repor | t           |           |
|----------------------|-----------------------------------------------|-------------------------------------------|-----------|---------------|-----------------------|-------------|-----------|
|                      |                                               |                                           |           | Spike         | SpikeRecovery(%)      | Recovery Li | imits (%) |
| Laboratory sample ID | Client sample ID                              | Method: Compound CA                       | AS Number | Concentration | MS                    | Low         | High      |
| ED041G: Sulfate (T   | urbidimetric) as SO4 2- by DA (QCLot: 988774) |                                           |           |               |                       |             |           |
| EP1707303-001        | Anonymous                                     | ED041G: Sulfate as SO4 - Turbidimetric 14 | 4808-79-8 | 100 mg/L      | # Not                 | 70          | 130       |
|                      |                                               |                                           |           |               | Determined            |             |           |
| ED045G: Chloride I   | y Discrete Analyser (QCLot: 988770)           |                                           |           |               |                       |             |           |
| EP1707297-007        | Anonymous                                     | ED045G: Chloride 16                       | 6887-00-6 | 1000 mg/L     | 99.6                  | 70          | 130       |
| EG020F: Dissolved    | Metals by ICP-MS (QCLot: 997063)              |                                           |           |               |                       |             |           |
| EP1707263-008        | Anonymous                                     | EG020A-F: Arsenic 74                      | 440-38-2  | 0.2 mg/L      | 96.0                  | 70          | 130       |

Page : 12 of 13 Work Order : EP1707310

Client : GOLDER ASSOCIATES



| Sub-Matrix: WATER   | Matrix Spike (MS) Report  Spike SpikeRecovery(%)      |                                      |            |               |                  |            |            |
|---------------------|-------------------------------------------------------|--------------------------------------|------------|---------------|------------------|------------|------------|
|                     |                                                       |                                      |            | Spike         | SpikeRecovery(%) | Recovery L | _imits (%) |
| aboratory sample ID | Client sample ID                                      | Method: Compound                     | CAS Number | Concentration | MS               | Low        | High       |
| G020F: Dissolved    | Metals by ICP-MS (QCLot: 997063) - continued          |                                      |            |               |                  |            |            |
| EP1707263-008       | Anonymous                                             | EG020A-F: Cadmium                    | 7440-43-9  | 0.05 mg/L     | 95.6             | 70         | 130        |
|                     |                                                       | EG020A-F: Chromium                   | 7440-47-3  | 0.2 mg/L      | 98.0             | 70         | 130        |
|                     |                                                       | EG020A-F: Copper                     | 7440-50-8  | 0.2 mg/L      | 94.1             | 70         | 130        |
|                     |                                                       | EG020A-F: Lead                       | 7439-92-1  | 0.2 mg/L      | 96.9             | 70         | 130        |
|                     |                                                       | EG020A-F: Nickel                     | 7440-02-0  | 0.2 mg/L      | 96.4             | 70         | 130        |
|                     |                                                       | EG020A-F: Zinc                       | 7440-66-6  | 0.2 mg/L      | 96.5             | 70         | 130        |
| G035F: Dissolved    | Mercury by FIMS (QCLot: 997064)                       |                                      |            |               |                  |            |            |
| P1707310-001        | Q00186-01                                             | EG035F: Mercury                      | 7439-97-6  | 0.01 mg/L     | 100              | 70         | 130        |
| K055G: Ammonia      | as N by Discrete Analyser (QCLot: 988776)             |                                      |            |               |                  |            |            |
| P1707307-001        | Anonymous                                             | EK055G: Ammonia as N                 | 7664-41-7  | 1 mg/L        | 107              | 70         | 130        |
| K057G: Nitrite as   | N by Discrete Analyser (QCLot: 988773)                |                                      |            |               |                  |            |            |
| EP1707303-001       | Anonymous                                             | EK057G: Nitrite as N                 | 14797-65-0 | 0.5 mg/L      | 84.5             | 70         | 130        |
| K059G: Nitrite pl   | us Nitrate as N (NOx) by Discrete Analyser (QCLot: 98 | 8775)                                |            |               |                  |            |            |
| EP1707286-001       | Anonymous                                             | EK059G: Nitrite + Nitrate as N       |            | 0.5 mg/L      | 112              | 70         | 130        |
| K061G: Total Kje    | dahl Nitrogen By Discrete Analyser (QCLot: 996952)    |                                      |            |               |                  |            |            |
| P1707332-001        | Anonymous                                             | EK061G: Total Kjeldahl Nitrogen as N |            | 5 mg/L        | 125              | 70         | 130        |
| K067G: Total Pho    | sphorus as P by Discrete Analyser (QCLot: 996951)     |                                      |            |               |                  |            |            |
| EP1707332-001       | Anonymous                                             | EK067G: Total Phosphorus as P        |            | 1 mg/L        | 96.3             | 70         | 130        |
| K071G: Reactive     | Phosphorus as P by discrete analyser (QCLot: 988771   |                                      |            |               |                  |            |            |
| EP1707297-007       | Anonymous                                             | EK071G: Reactive Phosphorus as P     | 14265-44-2 | 0.5 mg/L      | 116              | 70         | 130        |
|                     | nic Carbon (TOC) (QCLot: 999174)                      | ENOTIO: Neactive Filosphorus as i    |            | 0.0g          |                  |            |            |
| EB1714415-004       |                                                       | EDOOR TALLO IN CALL                  |            | 100 mg/l      | 04.7             | 70         | 120        |
|                     | Anonymous                                             | EP005: Total Organic Carbon          |            | 100 mg/L      | 94.7             | 70         | 130        |
|                     | al Oxygen Demand (Spectrophotometric) (QCLot: 9986    |                                      |            |               |                  |            |            |
| EP1707310-001       | Q00186-01                                             | EP026SP: Chemical Oxygen Demand      |            | 47.6 mg/L     | 96.2             | 70         | 130        |
| P080/071: Total P   | etroleum Hydrocarbons (QCLot: 990520)                 |                                      |            |               |                  |            |            |
| EP1707310-001       | Q00186-01                                             | EP071: C10 - C14 Fraction            |            | 400 μg/L      | 50.8             | 45         | 122        |
|                     |                                                       | EP071: C15 - C28 Fraction            |            | 400 μg/L      | 67.1             | 55         | 143        |
|                     |                                                       | EP071: C29 - C36 Fraction            |            | 400 μg/L      | 89.7             | 54         | 128        |
| P080/071: Total P   | etroleum Hydrocarbons (QCLot: 990557)                 |                                      |            |               |                  |            |            |
| EP1707322-002       | Anonymous                                             | EP080: C6 - C9 Fraction              |            | 240 μg/L      | 86.2             | 77         | 137        |
| P080/071: Total R   | ecoverable Hydrocarbons - NEPM 2013 Fractions (QC     | Lot: 990520)                         |            |               |                  |            |            |
| EP1707310-001       | Q00186-01                                             | EP071: >C10 - C16 Fraction           |            | 400 μg/L      | 50.5             | 45         | 122        |
|                     |                                                       | EP071: >C16 - C34 Fraction           |            | 600 μg/L      | 80.6             | 55         | 143        |
|                     |                                                       | EP071: >C34 - C40 Fraction           |            | 200 μg/L      | 111              | 54         | 128        |

Page : 13 of 13 Work Order : EP1707310

Client : GOLDER ASSOCIATES



| Sub-Matrix: WATER    |                                                     |                                                     |             | Ма            | trix Spike (MS) Repor | t           |          |
|----------------------|-----------------------------------------------------|-----------------------------------------------------|-------------|---------------|-----------------------|-------------|----------|
|                      |                                                     |                                                     |             | Spike         | SpikeRecovery(%)      | Recovery Li | mits (%) |
| Laboratory sample ID | Client sample ID                                    | Method: Compound                                    | CAS Number  | Concentration | MS                    | Low         | High     |
| EP080/071: Total F   | Recoverable Hydrocarbons - NEPM 2013 Fractions (QCL | .ot: 990557)                                        |             |               |                       |             |          |
| EP1707322-002        | Anonymous                                           | EP080: C6 - C10 Fraction                            | C6_C10      | 290 μg/L      | 79.0                  | 77          | 137      |
| EP080: BTEXN (Q      | CLot: 990557)                                       |                                                     |             |               |                       |             |          |
| EP1707322-002        | Anonymous                                           | EP080: Benzene                                      | 71-43-2     | 20 μg/L       | 107                   | 77          | 122      |
|                      |                                                     | EP080: Toluene                                      | 108-88-3    | 20 μg/L       | 82.8                  | 74          | 126      |
| EP231A: Perfluoro    | alkyl Sulfonic Acids (QCLot: 996761)                |                                                     |             |               |                       |             |          |
| EP1707263-007        | Anonymous                                           | EP231X: Perfluorobutane sulfonic acid (PFBS)        | 375-73-5    | 0.5 μg/L      | 90.6                  | 50          | 130      |
|                      |                                                     | EP231X: Perfluorohexane sulfonic acid (PFHxS)       | 355-46-4    | 0.5 μg/L      | 84.2                  | 50          | 130      |
|                      |                                                     | EP231X: Perfluorooctane sulfonic acid (PFOS)        | 1763-23-1   | 0.5 μg/L      | 106                   | 50          | 130      |
| EP231B: Perfluoro    | palkyl Carboxylic Acids (QCLot: 996761)             |                                                     |             |               |                       |             |          |
| EP1707263-007        | Anonymous                                           | EP231X: Perfluorobutanoic acid (PFBA)               | 375-22-4    | 2.5 μg/L      | 81.5                  | 50          | 130      |
|                      |                                                     | EP231X: Perfluoropentanoic acid (PFPeA)             | 2706-90-3   | 0.5 μg/L      | 80.8                  | 50          | 130      |
|                      |                                                     | EP231X: Perfluorohexanoic acid (PFHxA)              | 307-24-4    | 0.5 μg/L      | 72.4                  | 50          | 130      |
|                      |                                                     | EP231X: Perfluoroheptanoic acid (PFHpA)             | 375-85-9    | 0.5 μg/L      | 125                   | 50          | 130      |
|                      |                                                     | EP231X: Perfluorooctanoic acid (PFOA)               | 335-67-1    | 0.5 μg/L      | 113                   | 50          | 130      |
| EP231D: (n:2) Flu    | orotelomer Sulfonic Acids (QCLot: 996761)           |                                                     |             |               |                       |             |          |
| EP1707263-007        | Anonymous                                           | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.5 μg/L      | 106                   | 50          | 130      |
|                      |                                                     | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.5 μg/L      | 104                   | 50          | 130      |
|                      |                                                     | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.5 μg/L      | 112                   | 50          | 130      |
|                      |                                                     | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.5 μg/L      | 73.8                  | 50          | 130      |



## QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EP1707310** Page : 1 of 11

Client : GOLDER ASSOCIATES Laboratory : Environmental Division Perth

 Contact
 : SARAH GARVEY
 Telephone
 : 08 9209 7631

 Project
 : 1779954
 Date Samples Received
 : 10-Jul-2017

 Site
 : --- Issue Date
 : 18-Jul-2017

Sampler : --- No. of samples received : 2
Order number : 1779954 [Q00186] No. of samples analysed : 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

### **Outliers: Analysis Holding Time Compliance**

• Analysis Holding Time Outliers exist - please see following pages for full details.

#### **Outliers: Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 11 Work Order : EP1707310

Client : GOLDER ASSOCIATES

Project : 1779954

#### **Outliers: Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

| Compound Group Name                             | Laboratory Sample ID | Client Sample ID | Analyte          | CAS Number | Data       | Limits | Comment                          |
|-------------------------------------------------|----------------------|------------------|------------------|------------|------------|--------|----------------------------------|
| Matrix Spike (MS) Recoveries                    |                      |                  |                  |            |            |        |                                  |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA | EP1707303001         | Anonymous        | Sulfate as SO4 - | 14808-79-8 | Not        |        | MS recovery not determined,      |
|                                                 |                      |                  | Turbidimetric    |            | Determined |        | background level greater than or |
|                                                 |                      |                  |                  |            |            |        | equal to 4x spike level.         |

#### **Outliers: Analysis Holding Time Compliance**

Matrix: WATER

| Method                          | Ex             | traction / Preparation |         | Analysis      |                  |         |
|---------------------------------|----------------|------------------------|---------|---------------|------------------|---------|
| Container / Client Sample ID(s) | Date extracted | Due for extraction     | Days    | Date analysed | Due for analysis | Days    |
|                                 |                |                        | overdue |               |                  | overdue |
| EA005P: pH by PC Titrator       |                |                        |         |               |                  |         |
| Clear Plastic Bottle - Natural  |                |                        |         |               |                  |         |
| Q00186-01                       |                |                        |         | 11-Jul-2017   | 10-Jul-2017      | 1       |

#### **Outliers: Frequency of Quality Control Samples**

Matrix: WATER

| Matrix Water                                        |       |         |          |          |                                |
|-----------------------------------------------------|-------|---------|----------|----------|--------------------------------|
| Quality Control Sample Type                         | Count |         | Rate (%) |          | Quality Control Specification  |
| Method                                              | QC    | Regular | Actual   | Expected |                                |
| Matrix Spikes (MS)                                  |       |         |          |          |                                |
| PAH/Phenols (GC/MS - SIM)                           | 0     | 1       | 0.00     | 5.00     | NEPM 2013 B3 & ALS QC Standard |
| TRH - Total Recoverable Hydrocarbons - Silica Gel C | 0     | 1       | 0.00     | 5.00     | NEPM 2013 B3 & ALS QC Standard |

## **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER Evaluation: ★ = Holding time breach; ✓ = Within holding time.

| Walla Wallet                                       | Evaluation: • = Holding time breach; • = within holding time |                |                          |            |               |                  |            |  |  |
|----------------------------------------------------|--------------------------------------------------------------|----------------|--------------------------|------------|---------------|------------------|------------|--|--|
| Method                                             | Sample Date                                                  | Ex             | Extraction / Preparation |            |               | Analysis         |            |  |  |
| Container / Client Sample ID(s)                    |                                                              | Date extracted | Due for extraction       | Evaluation | Date analysed | Due for analysis | Evaluation |  |  |
| EA005P: pH by PC Titrator                          |                                                              |                |                          |            |               |                  |            |  |  |
| Clear Plastic Bottle - Natural (EA005-P) Q00186-01 | 10-Jul-2017                                                  |                |                          |            | 11-Jul-2017   | 10-Jul-2017      | *          |  |  |
| EA010P: Conductivity by PC Titrator                |                                                              |                |                          |            |               |                  |            |  |  |
| Clear Plastic Bottle - Natural (EA010-P) Q00186-01 | 10-Jul-2017                                                  |                |                          |            | 11-Jul-2017   | 07-Aug-2017      | ✓          |  |  |

Page : 3 of 11 Work Order : EP1707310

Client : GOLDER ASSOCIATES



| Matrix: WATER                                                       |             | Evaluation     | Evaluation: <b>x</b> = Holding time breach ; ✓ = Within holding time. |            |               |                  |            |
|---------------------------------------------------------------------|-------------|----------------|-----------------------------------------------------------------------|------------|---------------|------------------|------------|
| Method                                                              | Sample Date | Ex             | traction / Preparation                                                |            | Analysis      |                  |            |
| Container / Client Sample ID(s)                                     |             | Date extracted | Due for extraction                                                    | Evaluation | Date analysed | Due for analysis | Evaluation |
| EA015: Total Dissolved Solids dried at 180 ± 5 °C                   |             |                |                                                                       |            |               |                  |            |
| Clear Plastic Bottle - Natural (EA015H) Q00186-01                   | 10-Jul-2017 |                |                                                                       |            | 17-Jul-2017   | 17-Jul-2017      | ✓          |
| EA065: Total Hardness as CaCO3                                      |             |                |                                                                       |            |               |                  |            |
| Clear Plastic Bottle - Filtered; Lab-acidified (ED093F) Q00186-01   | 10-Jul-2017 |                |                                                                       |            | 14-Jul-2017   | 07-Aug-2017      | ✓          |
| ED037P: Alkalinity by PC Titrator                                   |             |                |                                                                       |            |               |                  |            |
| Clear Plastic Bottle - Natural (ED037-P) Q00186-01                  | 10-Jul-2017 |                |                                                                       |            | 11-Jul-2017   | 24-Jul-2017      | ✓          |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA                     |             |                |                                                                       |            |               |                  |            |
| Clear Plastic Bottle - Natural (ED041G) Q00186-01                   | 10-Jul-2017 |                |                                                                       |            | 10-Jul-2017   | 07-Aug-2017      | ✓          |
| ED045G: Chloride by Discrete Analyser                               |             |                |                                                                       |            |               |                  |            |
| Clear Plastic Bottle - Natural (ED045G) Q00186-01                   | 10-Jul-2017 |                |                                                                       |            | 10-Jul-2017   | 07-Aug-2017      | ✓          |
| ED093F: Dissolved Major Cations                                     |             |                |                                                                       |            |               |                  |            |
| Clear Plastic Bottle - Filtered; Lab-acidified (ED093F) Q00186-01   | 10-Jul-2017 |                |                                                                       |            | 14-Jul-2017   | 07-Aug-2017      | ✓          |
| EG020F: Dissolved Metals by ICP-MS                                  |             |                |                                                                       |            |               |                  |            |
| Clear Plastic Bottle - Filtered; Lab-acidified (EG020A-F) Q00186-01 | 10-Jul-2017 |                |                                                                       |            | 14-Jul-2017   | 06-Jan-2018      | <b>✓</b>   |
| EG035F: Dissolved Mercury by FIMS                                   |             |                |                                                                       |            |               |                  |            |
| Clear Plastic Bottle - Filtered; Lab-acidified (EG035F) Q00186-01   | 10-Jul-2017 |                |                                                                       |            | 14-Jul-2017   | 07-Aug-2017      | ✓          |
| EK055G: Ammonia as N by Discrete Analyser                           |             |                |                                                                       |            |               |                  |            |
| Clear Plastic Bottle - Sulfuric Acid (EK055G) Q00186-01             | 10-Jul-2017 |                |                                                                       |            | 10-Jul-2017   | 07-Aug-2017      | ✓          |
| EK057G: Nitrite as N by Discrete Analyser                           |             |                |                                                                       |            |               |                  |            |
| Clear Plastic Bottle - Natural (EK057G) Q00186-01                   | 10-Jul-2017 |                |                                                                       |            | 10-Jul-2017   | 12-Jul-2017      | ✓          |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser        |             |                |                                                                       |            |               |                  |            |
| Clear Plastic Bottle - Sulfuric Acid (EK059G) Q00186-01             | 10-Jul-2017 |                |                                                                       |            | 10-Jul-2017   | 07-Aug-2017      | ✓          |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyser                |             |                |                                                                       |            |               |                  |            |
| Clear Plastic Bottle - Sulfuric Acid (EK061G) Q00186-01             | 10-Jul-2017 | 17-Jul-2017    | 07-Aug-2017                                                           | 1          | 17-Jul-2017   | 07-Aug-2017      | ✓          |
| EK067G: Total Phosphorus as P by Discrete Analyser                  |             |                |                                                                       |            |               |                  |            |
| Clear Plastic Bottle - Sulfuric Acid (EK067G) Q00186-01             | 10-Jul-2017 | 17-Jul-2017    | 07-Aug-2017                                                           | ✓          | 17-Jul-2017   | 07-Aug-2017      | ✓          |

Page : 4 of 11 Work Order : EP1707310

Client : GOLDER ASSOCIATES



| Matrix: WATER                                                                       |             |                |                        | Evaluation | n: × = Holding time | breach ; ✓ = Withi | n holding time |
|-------------------------------------------------------------------------------------|-------------|----------------|------------------------|------------|---------------------|--------------------|----------------|
| Method                                                                              | Sample Date | Ex             | traction / Preparation |            | Analysis            |                    |                |
| Container / Client Sample ID(s)                                                     |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation     |
| EK071G: Reactive Phosphorus as P by discrete analyser                               |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Natural (EK071G) Q00186-01                                   | 10-Jul-2017 |                |                        |            | 10-Jul-2017         | 12-Jul-2017        | ✓              |
| EP005: Total Organic Carbon (TOC)                                                   |             |                |                        |            |                     |                    |                |
| Amber TOC Vial - Sulfuric Acid (EP005) Q00186-01                                    | 10-Jul-2017 |                |                        |            | 17-Jul-2017         | 07-Aug-2017        | ✓              |
| EP026SP: Chemical Oxygen Demand (Spectrophotometric)                                |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Sulfuric Acid (EP026SP) Q00186-01                            | 10-Jul-2017 |                |                        |            | 15-Jul-2017         | 07-Aug-2017        | ✓              |
| EP030: Biochemical Oxygen Demand (BOD)                                              |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Natural (EP030) Q00186-01                                    | 10-Jul-2017 |                |                        |            | 12-Jul-2017         | 12-Jul-2017        | ✓              |
| EP071 SG: Total Petroleum Hydrocarbons - Silica gel cleanup                         |             |                |                        |            |                     |                    |                |
| Amber Glass Bottle - Unpreserved (EP071SG) Q00186-01                                | 10-Jul-2017 | 13-Jul-2017    | 17-Jul-2017            | ✓          | 14-Jul-2017         | 22-Aug-2017        | ✓              |
| EP071 SG: Total Recoverable Hydrocarbons - NEPM 2013 Fractions - Silica gel cleanup |             |                |                        |            |                     |                    |                |
| Amber Glass Bottle - Unpreserved (EP071SG) Q00186-01                                | 10-Jul-2017 | 13-Jul-2017    | 17-Jul-2017            | ✓          | 14-Jul-2017         | 22-Aug-2017        | ✓              |
| EP075(SIM)A: Phenolic Compounds                                                     |             |                |                        |            |                     |                    |                |
| Amber Glass Bottle - Unpreserved (EP075(SIM)) Q00186-01                             | 10-Jul-2017 | 13-Jul-2017    | 17-Jul-2017            | ✓          | 14-Jul-2017         | 22-Aug-2017        | <b>√</b>       |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons                                      |             |                |                        |            |                     |                    |                |
| Amber Glass Bottle - Unpreserved (EP075(SIM)) Q00186-01                             | 10-Jul-2017 | 13-Jul-2017    | 17-Jul-2017            | ✓          | 14-Jul-2017         | 22-Aug-2017        | <b>√</b>       |
| EP080/071: Total Petroleum Hydrocarbons                                             |             |                |                        |            |                     |                    |                |
| Amber Glass Bottle - Unpreserved (EP071) Q00186-01                                  | 10-Jul-2017 | 13-Jul-2017    | 17-Jul-2017            | ✓          | 14-Jul-2017         | 22-Aug-2017        | ✓              |
| Amber VOC Vial - Sulfuric Acid (EP080)           Q00186-01,         Q00186-02       | 10-Jul-2017 | 12-Jul-2017    | 24-Jul-2017            | ✓          | 12-Jul-2017         | 24-Jul-2017        | ✓              |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions                     |             |                |                        |            |                     |                    |                |
| Amber Glass Bottle - Unpreserved (EP071) Q00186-01                                  | 10-Jul-2017 | 13-Jul-2017    | 17-Jul-2017            | ✓          | 14-Jul-2017         | 22-Aug-2017        | ✓              |
| Amber VOC Vial - Sulfuric Acid (EP080)           Q00186-01,         Q00186-02       | 10-Jul-2017 | 12-Jul-2017    | 24-Jul-2017            | ✓          | 12-Jul-2017         | 24-Jul-2017        | ✓              |
| EP080: BTEXN                                                                        |             |                |                        |            |                     |                    |                |
| Amber VOC Vial - Sulfuric Acid (EP080)           Q00186-01,         Q00186-02       | 10-Jul-2017 | 12-Jul-2017    | 24-Jul-2017            | ✓          | 12-Jul-2017         | 24-Jul-2017        | ✓              |
| EP231A: Perfluoroalkyl Sulfonic Acids                                               |             |                |                        |            |                     |                    |                |
| HDPE (no PTFE) (EP231X) Q00186-01                                                   | 10-Jul-2017 |                |                        |            | 17-Jul-2017         | 06-Jan-2018        | ✓              |

Page : 5 of 11 Work Order : EP1707310

Client : GOLDER ASSOCIATES



| Matrix: WATER                              |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | in holding time |
|--------------------------------------------|-------------|----------------|------------------------|------------|--------------------|--------------------|-----------------|
| Method                                     | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                 |
| Container / Client Sample ID(s)            |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation      |
| EP231B: Perfluoroalkyl Carboxylic Acids    |             |                |                        |            |                    |                    |                 |
| HDPE (no PTFE) (EP231X)<br>Q00186-01       | 10-Jul-2017 |                |                        |            | 17-Jul-2017        | 06-Jan-2018        | <b>✓</b>        |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids |             |                |                        |            |                    |                    |                 |
| HDPE (no PTFE) (EP231X)<br>Q00186-01       | 10-Jul-2017 |                |                        |            | 17-Jul-2017        | 06-Jan-2018        | <b>✓</b>        |
| EP231P: PFAS Sums                          |             |                |                        |            |                    |                    |                 |
| HDPE (no PTFE) (EP231X)<br>Q00186-01       | 10-Jul-2017 |                |                        |            | 17-Jul-2017        | 06-Jan-2018        | <b>✓</b>        |

Page : 6 of 11 Work Order EP1707310

Client **GOLDER ASSOCIATES** 

1779954 Project



## **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to

the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Quality Control Sample Type                            |            |       | ount    | Rate (%) |          |            | not within specification; $\checkmark$ = Quality Control frequency within specificate Quality Control Specification |
|--------------------------------------------------------|------------|-------|---------|----------|----------|------------|---------------------------------------------------------------------------------------------------------------------|
| Analytical Methods                                     | Method     | OC OC | Regular | Actual   | Expected | Evaluation | Quality Control Specification                                                                                       |
| Laboratory Duplicates (DUP)                            |            |       |         | 710100   | 2,200100 |            |                                                                                                                     |
| Alkalinity by PC Titrator                              | ED037-P    | 2     | 16      | 12.50    | 10.00    | <b>√</b>   | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Ammonia as N by Discrete analyser                      | EK055G     | 1     | 9       | 11.11    | 10.00    | <u> </u>   | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Biochemical Oxygen Demand (BOD)                        | EP030      | 2     | 20      | 10.00    | 10.00    | <u>√</u>   | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Chemical Oxygen Demand (COD) (Spectrophotometric)      | EP026SP    | 2     | 20      | 10.00    | 10.00    | <b>√</b>   | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Chloride by Discrete Analyser                          | ED045G     | 2     | 13      | 15.38    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Conductivity by PC Titrator                            | EA010-P    | 2     | 20      | 10.00    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Dissolved Mercury by FIMS                              | EG035F     | 2     | 16      | 12.50    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 2     | 17      | 11.76    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Major Cations - Dissolved                              | ED093F     | 2     | 20      | 10.00    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 2     | 16      | 12.50    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Nitrite as N by Discrete Analyser                      | EK057G     | 2     | 9       | 22.22    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1     | 1       | 100.00   | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS   | EP231X     | 2     | 18      | 11.11    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| pH by PC Titrator                                      | EA005-P    | 2     | 19      | 10.53    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 2     | 14      | 14.29    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 2     | 12      | 16.67    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Total Dissolved Solids (High Level)                    | EA015H     | 2     | 19      | 10.53    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 2     | 20      | 10.00    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Total Organic Carbon                                   | EP005      | 1     | 3       | 33.33    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 2     | 20      | 10.00    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| TRH - Semivolatile Fraction                            | EP071      | 1     | 8       | 12.50    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| TRH - Total Recoverable Hydrocarbons - Silica Gel C    | EP071SG    | 1     | 1       | 100.00   | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| TRH Volatiles/BTEX                                     | EP080      | 2     | 20      | 10.00    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Laboratory Control Samples (LCS)                       |            |       |         |          |          |            |                                                                                                                     |
| Alkalinity by PC Titrator                              | ED037-P    | 2     | 16      | 12.50    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Ammonia as N by Discrete analyser                      | EK055G     | 1     | 9       | 11.11    | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Biochemical Oxygen Demand (BOD)                        | EP030      | 1     | 20      | 5.00     | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Chemical Oxygen Demand (COD) (Spectrophotometric)      | EP026SP    | 2     | 20      | 10.00    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Chloride by Discrete Analyser                          | ED045G     | 2     | 13      | 15.38    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Conductivity by PC Titrator                            | EA010-P    | 1     | 20      | 5.00     | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Dissolved Mercury by FIMS                              | EG035F     | 1     | 16      | 6.25     | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1     | 17      | 5.88     | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Major Cations - Dissolved                              | ED093F     | 1     | 20      | 5.00     | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1     | 16      | 6.25     | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1     | 9       | 11.11    | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard                                                                                      |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1     | 1       | 100.00   | 5.00     | 1          | NEPM 2013 B3 & ALS QC Standard                                                                                      |

Page : 7 of 11
Work Order : EP1707310

Client : GOLDER ASSOCIATES



| Matrix: WATER                                          |            |    |         | Evaluatio | n: × = Quality Co | ntrol frequency | not within specification ; ✓ = Quality Control frequency within specification |
|--------------------------------------------------------|------------|----|---------|-----------|-------------------|-----------------|-------------------------------------------------------------------------------|
| Quality Control Sample Type                            |            | Co | ount    |           | Rate (%)          |                 | Quality Control Specification                                                 |
| Analytical Methods                                     | Method     | QC | Reaular | Actual    | Expected          | Evaluation      |                                                                               |
| Laboratory Control Samples (LCS) - Continued           |            |    |         |           |                   |                 |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS   | EP231X     | 1  | 18      | 5.56      | 5.00              | 1               | NEPM 2013 B3 & ALS QC Standard                                                |
| pH by PC Titrator                                      | EA005-P    | 2  | 19      | 10.53     | 10.00             | 1               | NEPM 2013 B3 & ALS QC Standard                                                |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 14      | 7.14      | 5.00              | <b>√</b>        | NEPM 2013 B3 & ALS QC Standard                                                |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 2  | 12      | 16.67     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Total Dissolved Solids (High Level)                    | EA015H     | 2  | 19      | 10.53     | 10.00             | <b>√</b>        | NEPM 2013 B3 & ALS QC Standard                                                |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 1  | 20      | 5.00      | 5.00              | <b>√</b>        | NEPM 2013 B3 & ALS QC Standard                                                |
| Total Organic Carbon                                   | EP005      | 2  | 3       | 66.67     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 1  | 20      | 5.00      | 5.00              | <b>√</b>        | NEPM 2013 B3 & ALS QC Standard                                                |
| TRH - Semivolatile Fraction                            | EP071      | 1  | 8       | 12.50     | 5.00              | 1               | NEPM 2013 B3 & ALS QC Standard                                                |
| TRH - Total Recoverable Hydrocarbons - Silica Gel C    | EP071SG    | 1  | 1       | 100.00    | 5.00              | 1               | NEPM 2013 B3 & ALS QC Standard                                                |
| TRH Volatiles/BTEX                                     | EP080      | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Method Blanks (MB)                                     |            |    |         |           |                   |                 |                                                                               |
| Alkalinity by PC Titrator                              | ED037-P    | 1  | 16      | 6.25      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Ammonia as N by Discrete analyser                      | EK055G     | 1  | 9       | 11.11     | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Biochemical Oxygen Demand (BOD)                        | EP030      | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Chemical Oxygen Demand (COD) (Spectrophotometric)      | EP026SP    | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Chloride by Discrete Analyser                          | ED045G     | 1  | 13      | 7.69      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Conductivity by PC Titrator                            | EA010-P    | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Dissolved Mercury by FIMS                              | EG035F     | 1  | 16      | 6.25      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 17      | 5.88      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Major Cations - Dissolved                              | ED093F     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 16      | 6.25      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 9       | 11.11     | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1  | 1       | 100.00    | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS   | EP231X     | 1  | 18      | 5.56      | 5.00              | <b>√</b>        | NEPM 2013 B3 & ALS QC Standard                                                |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 14      | 7.14      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 12      | 8.33      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Total Dissolved Solids (High Level)                    | EA015H     | 1  | 19      | 5.26      | 5.00              | <b>√</b>        | NEPM 2013 B3 & ALS QC Standard                                                |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 1  | 20      | 5.00      | 5.00              | 1               | NEPM 2013 B3 & ALS QC Standard                                                |
| Total Organic Carbon                                   | EP005      | 1  | 3       | 33.33     | 5.00              | 1               | NEPM 2013 B3 & ALS QC Standard                                                |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 1  | 20      | 5.00      | 5.00              | <u>√</u>        | NEPM 2013 B3 & ALS QC Standard                                                |
| TRH - Semivolatile Fraction                            | EP071      | 1  | 8       | 12.50     | 5.00              | <u>√</u>        | NEPM 2013 B3 & ALS QC Standard                                                |
| TRH - Total Recoverable Hydrocarbons - Silica Gel C    | EP071SG    | 1  | 1       | 100.00    | 5.00              | <b>√</b>        | NEPM 2013 B3 & ALS QC Standard                                                |
| TRH Volatiles/BTEX                                     | EP080      | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Matrix Spikes (MS)                                     |            |    |         |           |                   |                 |                                                                               |
| Ammonia as N by Discrete analyser                      | EK055G     | 1  | 9       | 11.11     | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Chemical Oxygen Demand (COD) (Spectrophotometric)      | EP026SP    | 1  | 20      | 5.00      | 5.00              | <b>√</b>        | NEPM 2013 B3 & ALS QC Standard                                                |
| Chloride by Discrete Analyser                          | ED045G     | 1  | 13      | 7.69      | 5.00              | <b>√</b>        | NEPM 2013 B3 & ALS QC Standard                                                |
| Dissolved Mercury by FIMS                              | EG035F     | 1  | 16      | 6.25      | 5.00              | <b>√</b>        | NEPM 2013 B3 & ALS QC Standard                                                |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 17      | 5.88      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |

Page : 8 of 11 Work Order : EP1707310

Client : GOLDER ASSOCIATES



| Matrix: WATER                                          |                                |    |         | Evaluation: <b>x</b> = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification. |          |            |                                |  |  |  |  |
|--------------------------------------------------------|--------------------------------|----|---------|--------------------------------------------------------------------------------------------------------------------------------|----------|------------|--------------------------------|--|--|--|--|
| Quality Control Sample Type                            |                                |    | Count   |                                                                                                                                | Rate (%) |            | Quality Control Specification  |  |  |  |  |
| Analytical Methods                                     | Method                         | OC | Reaular | Actual                                                                                                                         | Expected | Evaluation |                                |  |  |  |  |
| Matrix Spikes (MS) - Continued                         | Matrix Spikes (MS) - Continued |    |         |                                                                                                                                |          |            |                                |  |  |  |  |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G                         | 1  | 16      | 6.25                                                                                                                           | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |  |
| Nitrite as N by Discrete Analyser                      | EK057G                         | 1  | 9       | 11.11                                                                                                                          | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |  |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM)                     | 0  | 1       | 0.00                                                                                                                           | 5.00     | æ          | NEPM 2013 B3 & ALS QC Standard |  |  |  |  |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS   | EP231X                         | 1  | 18      | 5.56                                                                                                                           | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |  |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G                         | 1  | 14      | 7.14                                                                                                                           | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |  |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G                         | 1  | 12      | 8.33                                                                                                                           | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |  |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G                         | 1  | 20      | 5.00                                                                                                                           | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |  |
| Total Organic Carbon                                   | EP005                          | 1  | 3       | 33.33                                                                                                                          | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |  |
| Total Phosphorus as P By Discrete Analyser             | EK067G                         | 1  | 20      | 5.00                                                                                                                           | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |  |
| TRH - Semivolatile Fraction                            | EP071                          | 1  | 8       | 12.50                                                                                                                          | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |  |
| TRH - Total Recoverable Hydrocarbons - Silica Gel C    | EP071SG                        | 0  | 1       | 0.00                                                                                                                           | 5.00     | 3¢         | NEPM 2013 B3 & ALS QC Standard |  |  |  |  |
| TRH Volatiles/BTEX                                     | EP080                          | 1  | 20      | 5.00                                                                                                                           | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |  |

Page : 9 of 11 Work Order : EP1707310

Client : GOLDER ASSOCIATES

Project : 1779954



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                     | Method   | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------|----------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pH by PC Titrator                                      | EA005-P  | WATER  | In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE.  This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                             |
| Conductivity by PC Titrator                            | EA010-P  | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Total Dissolved Solids (High Level)                    | EA015H   | WATER  | In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                           |
| Alkalinity by PC Titrator                              | ED037-P  | WATER  | In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                      |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G   | WATER  | In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                      |
| Chloride by Discrete Analyser                          | ED045G   | WATER  | In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003                                                                                                                                                                                                 |
| Major Cations - Dissolved                              | ED093F   | WATER  | In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3)  Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3)  Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013) Schedule B(3)                                                                                  |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                                                                                                                        |
| Dissolved Mercury by FIMS                              | EG035F   | WATER  | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3) |

Page : 10 of 11 Work Order : EP1707310

Client : GOLDER ASSOCIATES



| Analytical Methods                                   | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------|------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ammonia as N by Discrete analyser                    | EK055G     | WATER  | In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser.  This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                               |
| Nitrite as N by Discrete Analyser                    | EK057G     | WATER  | In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser.  This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                            |
| Nitrate as N by Discrete Analyser                    | EK058G     | WATER  | In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                             |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser  | EK059G     | WATER  | In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                         |
| Total Kjeldahl Nitrogen as N By Discrete<br>Analyser | EK061G     | WATER  | In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                              |
| Total Nitrogen as N (TKN + Nox) By Discrete Analyser | EK062G     | WATER  | In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Total Phosphorus as P By Discrete<br>Analyser        | EK067G     | WATER  | In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                               |
| Reactive Phosphorus as P-By Discrete<br>Analyser     | EK071G     | WATER  | In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                    |
| Ionic Balance by PCT DA and Turbi SO4<br>DA          | EN055 - PG | WATER  | In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Total Organic Carbon                                 | EP005      | WATER  | In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                   |
| Chemical Oxygen Demand (COD) (Spectrophotometric)    | EP026SP    | WATER  | In house: Referenced to APHA 5220 D. Samples are digested with a known excess of an acidic potassium dichromate solution using silver sulfate as a catalyst. The chromium is reduced from the Cr (VI) oxidation state to the Cr (III) state by the oxygen present in the organic material. Both of these chromium species are coloued and absorb in the visible region of (400nm & 600nm) the spectrum. The oxidisable organic matter can be calculated in terms of oxygen equivalents.                                                                          |
| Biochemical Oxygen Demand (BOD)                      | EP030      | WATER  | In house: Referenced to APHA 5210 B. The 5-Day BOD test provides an empirical measure of the oxygen consumption capacity of a given water. A portion of the sample is diluted into oxygenated, nutrient rich water, and a seed added to begin biological decay. The initial dissolved oxygen content is measured, then the bottle is sealed and incubated for five days. The remaining dissolved oxygen is measured, and from the difference, the demand for oxygen, by biological decay, is determined. This method is compliant with NEPM (2013) Schedule B(3) |

Page : 11 of 11 Work Order : EP1707310

Client : GOLDER ASSOCIATES



| Analytical Methods                                      | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------|-------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TRH - Semivolatile Fraction                             | EP071       | WATER  | In house: Referenced to USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                                                                                        |
| TRH - Total Recoverable Hydrocarbons - Silica Gel C     | EP071SG     | WATER  | In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C36. This method is compliant with NEPM (2013) Schedule B(3) (Method 506.1)                                                                                                                                                                            |
| PAH/Phenols (GC/MS - SIM)                               | EP075(SIM)  | WATER  | In house: Referenced to USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                            |
| TRH Volatiles/BTEX                                      | EP080       | WATER  | In house: Referenced to USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve.  Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3) |
| Per- and Polyfluoroalkyl Substances<br>(PFAS) by LCMSMS | EP231X      | WATER  | In house: Direct injection analysis of fresh waters after dilution (1:1) with methanol. Analysis by LC-Electrospray-MS-MS, Negative Mode using MRM. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers.                                                                                                                                                      |
| Preparation Methods                                     | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                               |
| TKN/TP Digestion                                        | EK061/EK067 | WATER  | In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                              |
| Separatory Funnel Extraction of Liquids                 | ORG14       | WATER  | In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3). ALS default excludes sediment which may be resident in the container.                       |
| Volatiles Water Preparation                             | ORG16-W     | WATER  | A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for sparging.                                                                                                                                                                                                                                                                                                                             |

## CHAIN OF CUSTODY RECORD/ANALYSIS REQUEST

Q 00186 page of /

| Golder<br>Associates                               | Project Number: 177                            | 9954                                |                      | Laboratory Name                                   | e: Acs                 |                               |
|----------------------------------------------------|------------------------------------------------|-------------------------------------|----------------------|---------------------------------------------------|------------------------|-------------------------------|
| 1 Havelock Street West Perth, WA 6005 Australia    |                                                |                                     |                      | Address:                                          | Hallow                 | <b>)</b>                      |
| Telehone +61 8 9213 7600 Fax +61 8 9213            | S 7611 September Contact:                      | Golder Email Address:<br>@go        | older.com.au         | Telephone/Fax:                                    |                        | Contact:                      |
| West Perth, WA 6872                                | Other Canal                                    |                                     |                      |                                                   | Analyses Required      |                               |
| Telephone (61 8) 9213 7600<br>Fax (61 8) 9213 7611 | -t-Mail                                        |                                     | lners                |                                                   |                        |                               |
| F                                                  | Phone Fax                                      | <u> </u>                            | of Contain           | 5 2 -                                             | ₹ <b>५</b> 0           |                               |
| Sample Control<br>Number (SCN                      | Sample Matrix (over)  Date Sampled (D / M / Y) |                                     | Number of Containers |                                                   |                        | H Remarks (over)              |
| Dev186-01                                          | WIOT                                           | -                                   | N -                  | V                                                 |                        |                               |
| - 02                                               | W 18/7                                         |                                     | 1                    |                                                   | <b>V</b>               |                               |
| 03-                                                |                                                |                                     |                      |                                                   |                        |                               |
| - 04                                               |                                                |                                     |                      |                                                   |                        | Environmental Division        |
| - 05                                               |                                                |                                     |                      |                                                   |                        | Perth<br>Work Order Reference |
| - 06                                               |                                                |                                     |                      |                                                   |                        | EP1707310                     |
| -/07                                               |                                                |                                     |                      |                                                   |                        |                               |
| - 08                                               |                                                | <u>.</u>                            |                      | <del>                                      </del> |                        |                               |
| - 10                                               |                                                |                                     |                      |                                                   |                        |                               |
| - 11                                               |                                                |                                     |                      |                                                   |                        | °elephone : ± 61-8-9209 7655  |
| - 12                                               |                                                |                                     |                      |                                                   |                        |                               |
| npler's Signature:                                 | Relinquished by: Signature                     | Company Date                        | 7 7                  | ime F                                             | Received by: Signature | Company                       |
| le Storage (°C)                                    | Relinquished by: Signature                     | Company Date /O/                    | 4                    |                                                   | Received by: Signature |                               |
| nts:                                               | Method of Shipment:                            | Waybill No:                         | Receive              | ed for Lab by:                                    | Date                   | Time                          |
|                                                    | Shipped by:                                    | Shipment Condition:<br>Seal intact: | Temp (°              | C) Cooler opens                                   | ed by: Date            | Time                          |

## **ATTACHMENT 3**

# **Groundwater Sample Analysis Parameters**

| Parameter                                           |
|-----------------------------------------------------|
| pH                                                  |
| Electrical conductivity                             |
| Total nitrogen as N                                 |
| Total kjeldahl nitrogen as N                        |
| Ammonia (NH <sub>3</sub> )                          |
| Nitrate (NO <sub>3</sub> )                          |
| Nitrite (NO <sub>2</sub> )                          |
| Nitrate + Nitrite as N                              |
| Total phosphorus                                    |
| Reactive phosphorus                                 |
| Total dissolved solids                              |
| hardness                                            |
|                                                     |
| Total organic carbon                                |
| Biochemical oxygen demand                           |
| Chemical oxygen demand                              |
| Alkalinity Major potions / arriv                    |
| Major cations / anions                              |
| Arsenic (dissolved)                                 |
| Cadmium (dissolved)                                 |
| Chromium (dissolved)                                |
| Copper (dissolved)                                  |
| Lead (dissolved)                                    |
| Nickel (dissolved)                                  |
| Zinc (dissolved)                                    |
| Mercury (dissolved)                                 |
| Iron (dissolved)                                    |
| Aluminium (dissolved)                               |
| Calcium (dissolved)                                 |
| Total recoverable hydrocarbons (NEPM fractions)     |
| Total recoverable hydrocarbons (silica gel cleanup) |
| Benzene                                             |
| Toluene                                             |
| Ethylbenzene                                        |
| Xylenes                                             |
| Phenols                                             |
| Polycyclic aromatic hydrocarbons PFAS <sup>1</sup>  |
| PHAS'                                               |

As per the minimum requirements set out in Table 3 (page 10) of Interim Guideline on the Assessment and Management of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) (DER, 2017)



# **APPENDIX G**

**Important Information** 





#### IMPORTANT INFORMATION RELATING TO THIS REPORT

The document ("Report") to which this page is attached and which this page forms a part of, has been issued by Golder Associates Pty Ltd ("Golder") subject to the important limitations and other qualifications set out below.

This Report constitutes or is part of services ("Services") provided by Golder to its client ("Client") under and subject to a contract between Golder and its Client ("Contract"). The contents of this page are not intended to and do not alter Golder's obligations (including any limits on those obligations) to its Client under the Contract.

This Report is provided for use solely by Golder's Client and persons acting on the Client's behalf, such as its professional advisers. Golder is responsible only to its Client for this Report. Golder has no responsibility to any other person who relies or makes decisions based upon this Report or who makes any other use of this Report. Golder accepts no responsibility for any loss or damage suffered by any person other than its Client as a result of any reliance upon any part of this Report, decisions made based upon this Report or any other use of it.

This Report has been prepared in the context of the circumstances and purposes referred to in, or derived from, the Contract and Golder accepts no responsibility for use of the Report, in whole or in part, in any other context or circumstance or for any other purpose.

The scope of Golder's Services and the period of time they relate to are determined by the Contract and are subject to restrictions and limitations set out in the Contract. If a service or other work is not expressly referred to in this Report, do not assume that it has been provided or performed. If a matter is not addressed in this Report, do not assume that any determination has been made by Golder in regards to it.

At any location relevant to the Services conditions may exist which were not detected by Golder, in particular due to the specific scope of the investigation Golder has been engaged to undertake. Conditions can only be verified at the exact location of any tests undertaken. Variations in conditions may occur between tested locations and there may be conditions which have not been revealed by the investigation and which have not therefore been taken into account in this Report.

Golder accepts no responsibility for and makes no representation as to the accuracy or completeness of the information provided to it by or on behalf of the Client or sourced from any third party. Golder has assumed that such information is correct unless otherwise stated and no responsibility is accepted by Golder for incomplete or inaccurate data supplied by its Client or any other person for whom Golder is not responsible. Golder has not taken account of matters that may have existed when the Report was prepared but which were only later disclosed to Golder.

Having regard to the matters referred to in the previous paragraphs on this page in particular, carrying out the Services has allowed Golder to form no more than an opinion as to the actual conditions at any relevant location. That opinion is necessarily constrained by the extent of the information collected by Golder or otherwise made available to Golder. Further, the passage of time may affect the accuracy, applicability or usefulness of the opinions, assessments or other information in this Report. This Report is based upon the information and other circumstances that existed and were known to Golder when the Services were performed and this Report was prepared. Golder has not considered the effect of any possible future developments including physical changes to any relevant location or changes to any laws or regulations relevant to such location.

Where permitted by the Contract, Golder may have retained subconsultants affiliated with Golder to provide some or all of the Services. However, it is Golder which remains solely responsible for the Services and there is no legal recourse against any of Golder's affiliated companies or the employees, officers or directors of any of them.

By date, or revision, the Report supersedes any prior report or other document issued by Golder dealing with any matter that is addressed in the Report.

Any uncertainty as to the extent to which this Report can be used or relied upon in any respect should be referred to Golder for clarification.



As a global, employee-owned organisation with over 50 years of experience, Golder Associates is driven by our purpose to engineer earth's development while preserving earth's integrity. We deliver solutions that help our clients achieve their sustainable development goals by providing a wide range of independent consulting, design and construction services in our specialist areas of earth, environment and energy.

For more information, visit golder.com

Africa + 27 11 254 4800
Asia + 86 21 6258 5522
Australasia + 61 3 8862 3500
Europe + 44 1628 851851
North America + 1 800 275 3281
South America + 56 2 2616 2000

solutions@golder.com www.golder.com

Golder Associates Pty Ltd Level 3, 1 Havelock Street West Perth, Western Australia 6005 Australia T: +61 8 9213 7600

